DOI 10.37882/2223-2966.2022.10.37

ОТРАБОТКА МОДЕЛИ ВЫСОКОТОЧНОГО БЫСТРОДЕЙСТВУЮЩЕГО СЛЕДЯЩЕГО ЭЛЕКТРОМЕХАНИЧЕСКОГО ПРИВОДА И ЕЁ ПРИМЕНЕНИЕ В СИСТЕМЕ РЕГУЛИРОВАНИЯ ПАРОВОЙ ТУРБИНЫ

The model is based on traditional ideas about the dynamics of such systems, taking into account a number of essentially nonlinear elements.

Keywords: riding cut-off valve, roller screw drive, electromechanical transducer, steam turbine control system, electrohydraulic actuator.

Чубаров Федор Леонидович

К.т.н

Российский государственный аграрный университет— МСХА имени К.А. Тимирязева Калужский филиал fedor1966chub@yandex.ru Плахов Сергей Александрович

К.т.н Московский государственный технический университет имени Н.Э. Баумана, Калужский филиал sa.plahov@yandex.ru

Никитин Алексей Валерьевич

К.п.н Калужский технический колледж anikitin74@yandex.ru

Голиков Андрей Сергеевич

Старший преподаватель Московский государственный технический университет имени Н.Э. Баумана, Калужский филиал gas@bmstu.ru

Аннотация. Исследование динамики электрогидравлического контура регулирования частоты вращения ротора паровой турбины малой мощности, построенного на основе современного отечественного высокоточного быстродействующего электромеханического привода (ЭМП). Практический интерес к данному вопросу вызван тем обстоятельством, что большинство паровых турбин Калужского турбинного завода в настоящее время перешло на комплектацию системой регулирования электрогидравлического типа, обладающих рядом эксплуатационных преимуществ по сравнению с прежней гидродинамической системой [8]. Высокие эксплуатационные характеристики таких систем обусловлены применением в их конструкции ЭМП на базе ролико-винтовой пары, основные особенности конструкции которой учтены в оригинальной математической модели.

Модель построена на базе традиционных представлений о динамике подобных систем с учётом ряда существенно нелинейных элементов.

Ключевые слова: отсечной золотник, ролико-винтовая передача, электромеханический преобразователь, система регулирования паровой турбины, следящий электрогидравлический привод.

Введение

астоящая работа служит продолжением цикла, посвящённого исследованию быстродействующего прецизионного электромеханического привода, как исполнительного механизма системы регулирования частоты вращения паровой турбины.

В продолжение проработки вопросов применения электромеханических приводов (ЭМП) в управляющих контурах малоинерционных объектов регулирования [1,2] рассмотрены результаты моделирования в сравнении с результатами испытаний натурного ЭМП. Предложена совместная модель ЭМП и гидравлического блока регулирования в составе контура регулирования давления частоты вращения паровой турбины.

Постановка задачи

В рамках исследования динамических процессов в контуре системы автоматического регулирования паровой турбины ранее было выполнено:

- рассмотрены способы обеспечения высокоскоростных линейных перемещений с прецизионным позиционированием рабочего органа — паровпускного регулирующего клапана и выделены преимущества ролико-винтовой пары [1];
- предложена математическая модель следящего электромеханического привода, конструктивно способного с заданной скоростью и точностью управлять положением промежуточного усилительного элемента — отсечного золотника в составе исполнительного гидравлического механизма (блока регулирования) паровой турбины [2, 6].

Математическая модель

Математическая модель ЭМП, рассматриваемая далее, составлена по опытному образцу привода, спроектированному и изготовленному АО «Диаконт» (г. С.- Петербург) [4] для применения в системе регулирования частоты вращения одной из паровых турбин ПАО «Калужский турбинный завод» [4, 8]. Принципиальная схема такой системы показа на рис. 1.

Характерной особенностью её является применение гидравлического исполнительного механизма — гидромеханического блока регулирования, включающего в себя сам регулирующий паровпускной клапан, гидравлический сервомотор, отсечной золотник и электромеханический привод (преобразователь). Такой блок необходим для управления положением паровпускных регулирующих клапанов парораспределения турбины [4]. Функциональная схема контура регулирования показа на рис. 2.

Следящий привод отсечного золотника (СПОЗ) входит в состав блока регулирования системы автоматического регулирования паровой турбины (САР ПТ), предназначенного для преобразования электрического сигнала управления от электронной управляющей части (ЭУЧ) САР ПТ, в перемещение сервомоторов (СМ), создающих силу для перемещения регулирующих клапанов (РК).

Золотник отсечной (ОЗ) предназначен для изменения положения сервомоторов привода РК по сигналам управления от ЭУЧ системы регулирования через электрогидравлический преобразователь, а так же для перемещения СМ в сторону закрытия РК при срабатывании защиты.

СПОЗ включает в себя (см. рис. 3):

- исполнительный элемент синхронный электродвигатель переменного тока (СЭ ПТ);
- 2. ролико-винтовая передача (РВП);
- преобразователь частоты (ПЧ), реализующий алгоритм широтно-импульсной модуляции (ШИМ) векторного управления СЭ ПТ;
- 4. датчик положения ОЗ.

Рассмотрим математическую модель и переходные процессы в электромеханическом преобразователе ОЗ. Функциональная схема следящего привода ОЗ представлена на рис. 3.

На рис. 3 введены следующие условные обозначения:

ШИМ — модуль реализующий алгоритм широтно-импульсной модуляции;

ЭД ПТ — электрический двигатель переменного тока; РВП — ролико-винтовая передача;

- ОЗ отсечной золотник;
- ДП датчик положения ОЗ;
- ПЧ преобразователь частоты.

Составим математическую модель СПОЗ согласно функциональной схеме. При построении математической модели синхронного двигателя с постоянными магнитами примем следующие допущения:

- отсутствует насыщение магнитной цепи, потери в стали, эффект вытеснения тока;
- обмотки статора симметричны;
- индуктивность рассеяния не зависит от положения ротора в пространстве.

Уравнения синхронной машины с постоянными магнитами также рассмотрим в ортогональной синхрон-

Рис. 1. Принципиальная схема системы регулирования электрогидравлического типа СК — стопорный клапан, РК — регулирующий клапан, ТГ — турбогенератор

Рис. 2. Функциональная схема контура регулирования

1 — отсечной золотник, 2 — сервомотор, 3 — насос-импеллер (как источник рабочего масла для контура), 4 — ЭМП, 5 — электронная-управляющая часть системы регулирования, 6 — датчики частоты вращения на роторе турбины, 7 — рычажная механическая обратная связь сервомотора с золотником.

Рис. 3. Функциональная схема следящего привода отсечного золотника

Рис. 4. Схематическое изображение синхронного двигателя с постоянными магнитами

ной системе координат (d,q), ось d которой ориентирована по магнитной оси ротора (рис. 4).

В этом случае уравнения принимают следующий вид (модель Парка — Горева) [3]:

$$\begin{cases} \frac{d\varphi(t)}{dt} = \omega(t), \\ J_{_{\mathrm{TB}}} \frac{d\omega(t)}{dt} = M_{_{\mathrm{TB}}}(t) - M_{_{\mathrm{C}}}(t), \\ \frac{di_{_{d}}(t)}{dt} = -\frac{R}{L}i_{_{d}}(t) + p\omega(t)i_{_{q}}(t) + \frac{1}{L}u_{_{d}}(t), \\ \frac{di_{_{q}}(t)}{dt} = -\frac{R}{L}i_{_{q}}(t) - p\omega(t)i_{_{d}}(t) - \frac{k_{_{m}}}{L}\omega(t) + \frac{1}{L}u_{_{q}}(t), \end{cases}$$
(0.1)
FIGE

 $I_{d}(t), I_{q}(t), U_{d}(t), U_{q}(t)$ – токи и напряжения статора по осям d и q; электромагнитный момент на валу ЭД ПТ;

 $M_{_{\mathrm{HB}}}(t)$ — электромагнитный момент на валу ЭД ПТ; $M_{_{\mathrm{S}}}(t)$ — статический момент нагрузки;

 $\omega(t)$ — угловая частота вращения ротора, рад/с;

J — момент инерции электропривода, приведенный к валу двигателя;

R и *L* — сопротивление и индуктивность статорных обмоток (для случая неявнополюсной конструкции ротора двигателя).

Рассмотрим более подробно второе уравнение системы, уравнение движения привода

$$J_{\rm gB} \frac{d\omega(t)}{dt} = M_{\rm gB}(t) - M_{\rm c}(t) = c_m i_q(t) - M_{\rm c}(t), \quad (0.2)$$

$$\begin{cases} \frac{d\varphi}{dt} = \omega, \\ M_{\text{BEX}} = -c_m \frac{\sqrt{6}}{3} \sin(p\varphi) i_a + c_m \left[\frac{\sqrt{2}}{2} \cos(p\varphi) + \frac{\sqrt{6}}{6} \sin(p\varphi) \right] i_b + \\ + c_m \left[\frac{\sqrt{6}}{6} \sin(p\varphi) - \frac{\sqrt{2}}{2} \cos(p\varphi) \right] i_c - J_{\text{JB}} \frac{d}{dt} \omega - M_{\text{TP}} sign[\omega] \end{cases}$$

$$(0.9)$$

$$\frac{d}{dt} \begin{bmatrix} i_{a} \\ i_{b} \\ i_{c} \end{bmatrix} = \frac{1}{L} \begin{bmatrix} -\frac{\sqrt{6}}{3} c_{m} \omega \sin(p\varphi) \\ -\left(\frac{\sqrt{6}}{6} \sin(p\varphi) + \frac{\sqrt{2}}{2} \cos(p\varphi)\right) c_{m} \omega \\ \left(-\frac{\sqrt{6}}{6} \sin(p\varphi) + \frac{\sqrt{2}}{2} \cos(p\varphi)\right) c_{m} \omega \end{bmatrix} + \frac{R}{L} \begin{bmatrix} -\frac{2}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} \end{bmatrix} \begin{bmatrix} i_{a} \\ i_{b} \\ i_{c} \end{bmatrix} + \frac{R}{L} \begin{bmatrix} -\frac{2}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} \end{bmatrix} \begin{bmatrix} i_{a} \\ i_{b} \\ i_{c} \end{bmatrix} + \frac{R}{L} \begin{bmatrix} -\frac{2}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} \end{bmatrix} \begin{bmatrix} i_{a} \\ i_{b} \\ i_{c} \end{bmatrix} + \frac{R}{L} \begin{bmatrix} -\frac{2}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} \\ \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} \end{bmatrix} \begin{bmatrix} i_{a} \\ i_{b} \\ i_{c} \end{bmatrix} + \frac{R}{L} \begin{bmatrix} -\frac{2}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} \\ \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} \end{bmatrix} \begin{bmatrix} i_{a} \\ i_{b} \\ i_{c} \end{bmatrix} + \frac{R}{L} \begin{bmatrix} -\frac{2}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} \\ \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} \end{bmatrix} \begin{bmatrix} i_{a} \\ i_{b} \\ i_{c} \end{bmatrix} + \frac{R}{L} \begin{bmatrix} -\frac{2}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} \\ \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} \end{bmatrix} \begin{bmatrix} i_{a} \\ i_{b} \\ i_{c} \end{bmatrix} + \frac{R}{L} \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} \\ \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} \end{bmatrix} \begin{bmatrix} i_{a} \\ i_{b} \\ i_{c} \end{bmatrix} \end{bmatrix} + \frac{R}{L} \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} \\ \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \frac{1$$

$$+\frac{1}{L} \underbrace{\begin{pmatrix} \frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} \\ \frac{1}{3} & -\frac{1}{3} & \frac{2}{3} \end{pmatrix}}_{\mathbf{A}_{H}} \begin{bmatrix} u_{a} \\ u_{b} \\ u_{c} \end{bmatrix} = \frac{1}{L} \mathbf{A} + \frac{R}{L} \mathbf{A}_{T} \mathbf{I}^{T} + \frac{1}{L} \mathbf{A}_{H} \mathbf{U}^{T}$$

где *с*_{*m*} — коэффициент момента электродвигателя.

Для преобразования вращения ротора электродвигателя в поступательное перемещение отсечного золотника применена ролико-винтовая передача (РВП). Для получения более полной модели СПОЗ необходимо модель дополнить математической моделью РВП. Уравнение движения привода с учетом РВП:

$$M_{\rm Bbix}(t) = c_m i_q(t) - J_{\rm AB} \frac{d}{dt} \omega(t) - M_{\rm Tp} sign[\omega(t)], \quad (0.3)$$

где $\dot{\omega}(t)$ – угловое ускорение электродвигателя; M_{mp} — суммарный момент трения в двигателе и подшипниках ЭМП;

 $M_{mp}(t)$ — момент на валу ЭД ПТ.

Сила, приложенная со стороны электродвигателя, к отсечному золотнику [3]:

$$F(t) = \frac{2\pi}{H} \eta M_{\rm BMX}(t), \qquad (0.4)$$

где *H* — величина шага РВП;

η — коэффициент полезного действия РВП.

Величина скорости перемещения отсечного золотника определяется из выражения [3]:

$$m\frac{d^2}{dt^2}h_{_{30,\mathrm{I}}}(t) + K_{_{\mathrm{BT}}}\frac{d}{dt}h_{_{30,\mathrm{I}}}(t) = F(t), \qquad (0.5)$$

(0.10)

где *m* — суммарная масса отсечного золотника и винта, жестко с ним соединенного;

 $K_{\rm sm}$ — коэффициент вязкого трения в отсечном золотнике;

 $\ddot{h}_{_{\rm 30Л}}(t)$ — ускорение отсечного золотника; $\dot{h}_{_{30Л}}(t)$ — скорость отсечного золотника.

На вход системы электромеханического следящего привода поступает сигнал $u_{aao}(t)$, пропорциональный задаваемому значению отклонения отсечного золотника. Управление происходит непрерывным токовым сигналом в диапазоне 5÷20[мА] и входное сопротивление, установленное на входе АЦП преобразователя частоты, имеет значение 200[Ом], что эквивалентно изменению сигнала $u_{aao}(t)$ в диапазоне 1÷4[В]. Ошибка отработки сигнала

$$\Delta u(t) = u_{3a\pi}(t) - u_{3o\pi}(t), \qquad (0.6)$$

где u_{307} — сигнал с выхода датчика линейного перемещения золотника:

$$u_{30\pi}(t) = K_{\pi\pi} h_{30\pi}(t),$$
 (0.7)

где $K_{\partial n}$ — коэффициент датчика перемещения от-сечного золотника.

Зависимость угловой скорости вала ЭД ПТ от величины перемещения вала РВП, определяется выражением:

$$\omega(t) = \frac{2\pi}{H} \frac{d}{dt} h_{30\pi}(t). \tag{0.8}$$

Тогда математическая модель СПОЗ в системе координат a - b - c примет вид (0.9), где (см. (0.10),

где \mathbf{A}_{T} и \mathbf{A}_{H} матрицы разложения, справедливы для трехфазных симметричных машин переменного тока (используются в ШИМ); $\mathbf{I} = \begin{bmatrix} i_a & i_b & i_c \end{bmatrix}$; $\mathbf{U} = \begin{bmatrix} u_a & u_b & u_c \end{bmatrix}$.

Для управления СПО3, последний комплектуется преобразователем частоты (ПЧ), модель и алгоритм работы которого рассматривается в следующем пункте.

Таким образом, результирующее управление, поступающее на ПЧ ЭД ПТ имеет вид:

$$u_{y}(t) = u_{3a,\pi}(t) - u_{3o,\pi}(t) + u_{KOM}(t),$$
 (0.11)

где $u_{\text{ком}}(t)$ — сигнал, обеспечивающий уменьшение ошибки от воздействия осевой нагрузки на отсечной золотник;

$$u_{\text{ком}} = 0$$
 при $-u_{30,1} \le u_{30,1} \le u_{30,1};$

 $u_{\text{ком}} = K_{\text{от}} \left(u_{3\text{ол}} - u_{3\text{ол}1} \right)$ при $-u_{3\text{ол}1} > u_{3\text{ол}1} > u_{3\text{ол}1};$ $u_{3\text{ол}1}$ — сигнал, пропорциональный значению отклонения отсечного золотника, до которого значение $u_{\text{ком}}$ равно нулю ($u_{3\text{ол}1} = 2[\text{B}]$ – гидравлический ноль);

*K*_{от} — коэффициент компенсационного сигнала.

Видно, что обе математические модели и являются нелинейными, но математическая модель СПОЗ в системе координат d - q значительно проще. Поэтому синтез управления для СПОЗ можно проводить в этой системе, а моделирование, ШИМ-регулирование напряжения на обмотках статора в системе a - b - c.

ЛИТЕРАТУРА

- Сизов А.Н., Мусатов Е.А., Чубаров Ф.Л., Гусев И.В. Применение высокоточных быстродействующих следящих электромеханических приводов в электрогидравлических системах регулирования частоты вращения паровых турбин. Теоретические и прикладные аспекты современной науки: сборник научных трудов по материалам V Международной научно-практической конференции 30 ноября 2014 г.: в 6 ч. / Под общ. ред. М.Г. Петровой. — Белгород: ИП Петрова М.Г., 2014. — Часть III. — с. 133–139.
- 2. Сизов А.Н., Чубаров Ф.Л., Гусев И.В. Разработка модели высокоточного, быстродействующего следящего электромеханического привода. «Современные проблемы науки и образования». — 2015. — № 1–1. с. 444.
- 3. Кирюхин В.И., Тараненко Н.М., Огурцова Е.П. и др. Паровые турбины малой мощности КТЗ. М.: Энергоатомиздат, 1987.
- 4. Программа и методика предварительных испытаний ЭМП, рег. № А17/30—632, ЗАО «Диаконт», 2011 г.
- 5. Сизов А.Н., Чубаров Ф.Л., Быков А.И. Отработка модели высокоточного быстродействующего следящего электромеханического привода и её применение к системе регулирования паровой турбины. «Фундаментальные исследования». — 2016. — № 9–1. — с. 91–95
- 6. Ильдияров Е.Н., Сизов А.Н., Чубаров Ф.Л. Исследование электрогидравлического контура регулирования частоты вращения ротора паровой турбины на базе следящего электромеханического привода «Современные наукоемкие технологии» — 2018. — № 4; 44–48 с:
- Dmitriy Akimenko 1, Alexandr Sizov, Fedor Chubarov, Aleksey Nikitin and Lusia del Sokorro. A discrete control algorithm synthesis for the live-steam-line heating system. MATEC Web Conf. Vol. 329, 2020. (ICMTMTE2020). Art. num. 03074, published online 26 November 2020. https://www.matec-conferences.org/articles/ matecconf/abs/2020/25/matecconf_icmtmte2020_03074/matecconf_icmtmte2020_03074.html
- Сизов А.Н., Мусатов Е.А., Баглаев П.В. Следящий электромеханический привод отсечного золотника в электрогидравлической системе регулирования частоты вращения паровой турбины // Наукоёмкие технологии в приборо- и машиностроении и развитие инновационной деятельности в вузе: материалы региональной научно-технической конференции. Калуга: Изд-во МГТУ им. Н.Э. Баумана, 2014. Т. 2. С. 123–130.
- 9. ГОСТ Р 55890—2013. Единая энергетическая система и изолированно работающие энергосистемы. Оперативно-диспетчерское управление. Регулирование частоты и перетоков активной мощности. Нормы и требования. М.: Стандартинформ, 2014—20 с.
- 10. СТО 59012820.27.100.002—2013. Нормы участия энергоблоков тепловых электростанций в нормированном первичном регулировании частоты и автоматическом вторичном регулировании частоты и перетоков активной мощности. — М.: Изд-во стандартов, 2013. — 18 с.
- 11. Булкин А.Е. Автоматическое регулирование энергоустановок: пособие для вузов / А.Е. Булкин. М.: Издательский дом МЭИ, 2009. 507 с.
- 12. Шавлович З.А. Совершенствование конструкций и режимов работы гидравлических приводов в системах регулирования гидротурбин: автореф. дис. канд. тех. наук. Санкт-Петербург, 2004. 22 с.

- 13. Пупков К.А. Методы инженерного синтеза сложных систем управления: аналитический аппарат, алгоритмы приложения в технике. Часть II. Вычислительно-аналитический эксперимент: аппарат матричных операторов и вычислительные технологии / К.А. Пупков, Н.Д. Егупов.— М.: МГТУ им Н.Э. Баумана, 2012.— 416 с.
- 14. Новосёлов В.Б. Разработка методов исследования и совершенствования электрогидравлической системы регулирования и защиты паровых теплофикационных турбин и их элементов: автореф. дис. док. техн. наук. — Екатеринбург, 2014. — 47 с.
- 15. Жмудь В.А. О методах расчета ПИД-регуляторов // Автоматика и программная инженерия. 2013. № 2(4). С. 118–124.

© Чубаров Федор Леонидович (fedor1966chub@yandex.ru), Плахов Сергей Александрович (sa.plahov@yandex.ru), Никитин Алексей Валерьевич (anikitin74@yandex.ru), Голиков Андрей Сергеевич (gas@bmstu.ru). Журнал «Современная наука: актуальные проблемы теории и практики»

