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Аннотация. Статья посвящена разработке модифицированного алгоритма 
генерации положений захвата на основе GGCNN с интеграцией метода глав-
ных компонент (PCA) для повышения точности роботизированного захвата 
объектов без переобучения нейросети. 
Данная проблема актуальна и  необходима к  рассмотрению в  силу разви-
вающихся методов технического зрения и нейросетевых подходов в сфере 
роботизации. Работа с трёхмерными изображениями всё больше и больше 
набирает популярность в замену классических подходов машинного зрения 
и работы с двухмерными изображениями. С развитием робототехнических 
средств и  мобильных роботов возникает проблема, которая заключается 
в захвате объектов, которые зачастую находятся в операционном простран-
стве роботизированного захвата хаотично и необходимо использовать про-
двинутые методы для обнаружения объектов и последующего захвата и что 
не  менее важно, необходимо применять некоторые алгоритмы для таких 
простых задач, как захват и перенос объектов, а также сортировка объек-
тов, в случае промышленного производства
В работе предложен усовершенствованный подход, сочетающий генера-
тивную свёрточную нейронную сеть GGCNN с  PCA-анализом. Методология 
включает: предварительную обработку входных данных, а именно глубин-
ной карты, которая поступает с камеры RealSense, анализ карты вероятно-
сти захвата объекта с  помощью метода главных компонент и  получение, 
а  также преобразование данных в  формат для захвата объекта. Сбор экс-
периментальных данных проводился на основе предварительно обученной 
нейросети GGCNN на датасете Корнелла (Cornell dataset) с целью получения 
метрики успешности захвата.
В результате данной работы удалось получить приемлемый результат веро-
ятности захвата объекта, порядка 95,6  %, для исследуемого объекта с при-
менением метода главных компонент на  параметрическую карту вероят-
ности захвата объекта, а также оценить вероятность захвата при различных 
параметрах выбора точек для работы с  методом главных компонент для 
симметричного объекта.
Применение предложенного метода привело к повышению вероятности за-
хвата объекта без переобучения нейросети, а значит и уменьшению трудо-
затрат на создание наборов данных для обучения и переобучение сети для 
необходимых объектов, а также уменьшению выходного числа параметри-
ческих карт, а в следствии и уменьшение размерности выхода нейросети. 

Ключевые слова: метод главных компонент, PCA, роботизированный захват, 
GGCNN, сверточные нейронные сети, CNN, манипуляционные задачи, ком-
пьютерное зрение, робототехника.

IMPROVING GRASP POSE GENERATION 
USING GGCNN AND PRINCIPAL 
COMPONENT ANALYSIS

A. Andreev

Summary. The article is dedicated to the development of a modified 
grasp pose generation algorithm based on GGCNN with the integration 
of principal component analysis (PCA) to improve the accuracy of robotic 
object grasping without retraining the neural network.
This problem is highly relevant given the evolving methods of machine 
vision and neural network approaches in robotics. Working with three-
dimensional images is increasingly popular as a replacement for classical 
machine vision techniques and two-dimensional image processing. As 
robotic systems and mobile robots advance, a challenge arises in grasping 
objects that are often randomly located within the robot’s operational 
workspace. This necessitates the use of advanced methods for object 
detection and subsequent grasping. Equally important is the application 
of specific algorithms for seemingly simple tasks such as picking up, 
transferring, and sorting objects in industrial production.
This work proposes an enhanced approach that combines the generative 
grasping convolutional neural network (GGCNN) with PCA analysis. The 
methodology includes preprocessing of input data—namely the depth 
map from an Intel RealSense camera—analyzing the object grasp 
probability map using PCA, and transforming the data into a format 
suitable for grasp execution. Experimental data were collected using 
a pretrained GGCNN on the Cornell dataset to obtain metrics for grasp 
success.
As a result of this work, an acceptable grasp success probability of 
approximately 95.6  % was achieved for the test object by applying PCA 
to the parametric grasp probability map. The study also evaluated grasp 
probabilities under various point-selection parameters for PCA when 
dealing with a symmetrical object.
The proposed method increases the object grasp success probability 
without retraining the neural network, thereby reducing the labor 
required to create and label training datasets and retrain the network for 
new objects. It also reduces the number of output parametric maps and, 
consequently, decreases the dimensionality of the network’s output.

Keywords: principal component analysis, PCA, robotic grasping, GGCNN, 
convolutional neural networks, CNN, manipulation tasks, computer 
vision, robotics.
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Введение

Основная задача работы сводится к  тому, чтобы 
улучшить вероятность захвата объекта с  при-
менением свёрточной нейросети для генерации 

положения захвата GGCNN без переобучения сети для 
нового объекта, который не  содержится внутри обуча-
ющего датасета, а  также уменьшить выходную размер-
ность нейросети с целью уменьшения загрузки системы 
без значимой потери в точности, а также снизить трудо-
затраты на создание нового размеченного датасета для 
переобучения нейросети, что является достаточно тру-
доёмкой задачей.

В робототехнике данная проблематика имеет значе-
ние, поскольку нейросетевые алгоритмы внедряются 
повсеместно, начиная с производственных линий, закан-
чивая мобильными роботами различного назначения.

Как справедливо отмечается в работе [1], роботизи-
рованный захват остаётся ключевым навыком для вы-
полнения сложных операций, при этом точных захвата 
произвольных объектов в неструктурированных средах 
продолжает оставаться сложной для решения исследо-
вательской проблемой. Как приводится в  этой работе, 
современные методы захвата включают в себя три клю-
чевых аспекта: детекция захвата, планирование пути 
и управляющая подсистема. В нашей работе исследова-
ние сфокусировано на работе над первым этапом через 
интеграцию GGCNN и PCA.

Материалы и методы

В данной статье в качестве объекта изучения исполь-
зовалась свёрточная нейронная сеть для генерации по-
ложения захвата объекта GGCNN (Grasp Generative CNN). 
Данная сеть используется для получения положения 
роботизированного двухпальцевого схвата. В  текущем 
случае будет использоваться только одна карта параме-
тров — карта вероятностей захвата.

Метод главных компонент позволяет получить угол 
захвата объекта, не  прибегая к  использованию допол-
нительных карт параметров с выхода GGCNN. В отличие 
от архитектуры MultiGrasp [2], где используется локаль-
но-ограниченный механизм предсказаний (сетка 7×7), 
наш метод применяет PCA к карте вероятностей GGCNN. 
Это позволяет: избежать жесткой привязки к  сетке, ав-
томатически определять главные оси захвата, однако 
позволяет работать только с  объектами симметричной 
формы без модификации архитектуры.

Литературный обзор 

В одной из  статей приводится утверждение «Боль-
шинство методов обеспечивают высокий процент успе-

ха за счет обучения сети на наборах данных с большим 
количеством аннотаций захватов, что требует значитель-
ных трудозатрат и ресурсов. Поэтому достижение высо-
кой точности захвата в  стопке объектов без аннотаций 
остается сложной задачей.» [3, с. 1477–1490]. Данная ста-
тья предлагает решение в области робототехники в за-
даче захвата объекта без обучения нейросети на  боль-
шом наборе аннотационных или обучающих данных. 
Проблематика данной статьи поднимается таким обра-
зом, что обучение нейросетей с использованием новых 
датасетов является трудоёмкой и сложной задачей. Дан-
ная проблема также имеет решение в текущей статье.

«Использование машинного обучения в роботизиро-
ванном захвате значительно повышает гибкость и адап-
тивность систем, открывая новые возможности для ав-
томатизации в динамичных отраслях» [4]. Данная цитата 
лишний раз подтверждает, что машинное обучение и ме-
тоды, базированные на искусственном интеллекте, явля-
ются достаточно гибкими и добавляют адаптивности си-
стемам, что подтверждается в проделанной работе.

«Объединяя перцепционные возможности глубоко-
го обучения с  геометрической верификацией, данная 
работа продвигает развитие автономных роботизиро-
ванных систем, предлагая масштабируемое решение 
для промышленной автоматизации, ориентированное 
на точность и адаптивность» [5]. В текущей работе также 
используются гибридный метод, обеспечивающий до-
статочно высокую скорость для систем реального вре-
мени с  высокой частотой кадров, порядка 20 и  более 
кадров в секунду, однако используется метод из области 
статистики, а именно метод главных компонент, который 
позволяет снизить размерность данных системы. Так, на-
пример в нашей работе производится переход от двух-
мерной карты вероятности захвата к одномерной глав-
ной компоненте, в  следствии чего мы можем получить 
ориентацию двумерного облака точек в  пространстве, 
а значит и ориентацию объекта для успешного захвата.

Также, в другой научной публикации приводится за-
ключение о  том, что раньше роботизированные руки 
на  производствах требовали специального програм-
мирования для каждой конкретной задачи, например, 
захват объекта из  фиксированного местоположения 
с известной заданной ориентацией, однако на текущий 
момент «современные нейронные сети обладают авто-
номными возможностями, которые активно используют-
ся для совершенствования робототехники и повышения 
точности позиционирования» [6, с. 497–519].

Также в одной из работ приводится реализация систе-
мы подобной на реализованную в данной работе, за ис-
ключением, что используется связка YOLOv4+GGCNN для 
захвата объекта [7]. В данной работе показатель обработ-
ки одного кадра составляет порядка 0,11 секунды, а ве-
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роятность захвата объектов составляет порядка 86,0 %. 
Данная работа полагается на работу с большим числом 
различных сред, что в  целом обеспечивает достаточно 
сложные для испытания обстоятельства, однако стоит 
обратить внимание на параметр скорости обработки ка-
дра. Значение в 0,11 секунды на обработку одного кадра 
является достаточным значением для систем реального 
времени, однако в нашем случае скорость обработки од-
ного кадра имеет скорость несколько выше в силу более 
простой системы обработки изображения.

Результаты

Система представляет из  себя достаточно сложную 
и  многоуровневую систему, представленную на  струк-
турной схеме на Рис. 1.

Данная система реализована в имитационной среде 
с целью обеспечить автономность выполнения экспери-

мента. Алгоритм выполнения эксперимента представ-
лен на алгоритмической блок-схеме на Рис. 2.

Приведём краткое описание данной блок схемы.

1 — начало выполнения алгоритма.

2 — запуск рабочей среды и  инициализация необ-
ходимых программных классов, таких как: CSVLogger, 
RobotControl, ImageProcess и GazeboObjectManager. Все 
объекты необходимы для решения соответствующих их 
названию задач.

3 — отведение робота в домашнюю позицию выпол-
няется с целью освобождения рабочей области для по-
следующего создания на ней объектов.

4, 12 — цикл эксперимента, который выполняется не-
обходимое число раз. С целью обеспечения достоверно-

Рис. 1. Структурная схема системы для автоматизированной оценки системы алгоритма захвата объекта
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сти результатов было выбрано число испытаний поряд-
ка сотни циклов эксперимента.

5 — создание объекта в  случайном месте рабочей 
области. Рабочая область представляет из себя область 
видимости камеры направленной перпендикулярно 
вниз на платформу. Объект создаётся в случайном месте 

таким образом, чтобы оставаться в  области видимости 
камеры полностью. В случае, если объект ранее был соз-
дан, то предыдущий объект предварительно будет уда-
лён.

6 — обработка рабочей области происходит в  не-
сколько этапов, которые включают нормализацию глу-

Рис. 2. Алгоритмическая блок-схема проведения эксперимента
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бинного изображения, фильтрация артефактов и  обра-
ботка карты через нейросеть, применение алгоритма 
для получения параметров захвата.

7 — захват объекта происходит также в  несколько 
этапов. Сначала манипулятор разворачивает фланец со-
гласно одному из  параметров захвата объекта — углу 
поворота. Затем происходит позиционирование захвата 
над объектом в положение захвата и последующее пер-
пендикулярное опускание манипулятора к объекту и по-
следующих захват.

8 — относим объект в домашнее положение.

9 — проверка захвата объекта производится с  по-
мощью машины состояний, которая позволяет получить 
положение и ориентацию объекта. В случае, если объект 
был захвачен, выполняется переход к  блоку 10 и  в csv 
файл выполняется запись о то, что объект был захвачен. 
В случае, если объект захвачен не был, выполняется пе-
реход к блоку 11 и соответствующая запись в csv файл.

13 — конец выполнения алгоритма.

Изначально в  качестве параметров для захвата ис-
пользовались параметры сформированные исключи-
тельно нейросетью. Таким образом вероятность захвата 
составляла крайне низкое значение для практического 
применения, порядка 45 %. Такой низкий результат веро-
ятности захвата обусловлен тем, что в исходном наборе 
данных для обучения камера располагалась к объектам 
под некоторым углом относительно нормали рабочей 
области. Пример датасета приведён на  Рис. 3. В  нашей 

же системе используется объект, который не содержится 
в обучающем датасете. Задача состояла в том, чтобы без 
переобучения свёрточной нейросети получить прием-
лемую вероятность захвата изучаемого объекта.

Наибольший интерес для исследования представля-
ет карта вероятности захвата объекта, которая генери-
руется с помощью свёрточной нейросети. Данная карта 
вместе с глубинной картой рабочей области представле-
на на Рис. 4. Стоит отметить, что мы проводили изучение 
объекта с размерами 50х50х150 мм.

Рис. 4. Глубинная карта рабочей области (слева)  
и карта вероятности захвата от нейросети (справа)

Карта вероятности захвата представляет собой не-
которое облако точек, которое отражает вероятность 
успешного захвата в  каждой точке изображения. Зна-
чения от  0 до  1, где 1 — наилучшее место для захвата. 
Проводя аналогию с Рис. 4, более светлые пиксели соот-
ветствуют наибольшей вероятности успешного захвата 
объекта, а  более тёмные соответствуют обратному. Как 
это должно работать на  практике: на  вход GGCNN по-

Рис. 3. Пример объектов набора данных Корнелла для обучения нейросети
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даётся RGB-D карта рабочей области, нейросеть пред-
сказывает три карты параметров (Quality/Q-map, Angle, 
Width), алгоритм выбирает точку с  наибольшим зна-
чением Q-map и  затем смотрит соответствующие зна-
чения Angle и  Width на  соответствующих картах для 
точки с  наибольшей вероятностью захвата [5]. Однако 
такой подход показывает не самые лучшие результаты, 
поскольку камера в  нашем случае имеет нормальную 
рабочей области ориентацию, а  угол и  ширина захвата 
зачастую определяются некорректно. В  следствии чего 
было принято решение найти альтернативный способ 
увеличить вероятность захвата объекта без переобуче-
ния нейросети.

В качестве решения было принято использовать 
метод главных компонент PCA, как описано в  одной 
из  работ «Чтобы справиться с  высокой размерностью 
пространства конфигурации рук, авторы предлагают 
отображать траектории рук в  более низкое скрытое 
пространство с использованием анализа основных ком-
понентов (PCA)» [8]. Было принято решение перейти 
к анализу карты вероятности захвата Q-map с помощью 
метода PCA для получения двух важных параметров для 
захвата объекта: ориентация симметричного объекта 
и центра массы объекта.

Таким образом, новый алгоритм определения пара-
метров захвата объекта включил в себя дополнительно 
обработку карты вероятности захвата с  помощью ме-
тода главных компонент, однако было дополнительно 
принято решение отфильтровать точки с  низкими ве-
роятностями захвата и  оставить исключительно точки 
в  высокими вероятностями захвата. Так на  рисунке 5 
приведена сравнительная характеристика для выявле-
ния вероятности захвата объекта.

Рис. 5. Графическая интерпретация отсечения точек 
с вероятностью захвата выше 0,5 слева и 0,9 справа 

(серые точки), центром массы объекта (светло-серая 
точка) и главной компонентой (темно-серая линия)

Также были собраны данные о том, насколько реаль-
ный геометрический центр отличается от центра массы, 
рассчитанного по среднем координатам отфильтрован-
ных точек, объекта и абсолютное среднее арифметиче-
ское отклонение главной компоненты от истинной ори-
ентации объекта. Данные представлены в таблице 1.

Для объективной оценки нашего подхода сравним 
его с современными аналогами. Система Gu et al. [9], те-

стировавшаяся на тех же датасетах, показывает точность 
97.8 % (Cornell, image-wise), однако требует предвари-
тельного обучения и  человеческого участия. Наш ме-
тод, хотя и демонстрирует несколько меньшую точность 
(95.6 %), работает полностью автономно и не нуждается 
в переобучении для новых объектов.

Обсуждение

Как можно заметить из  таблицы 2 с  отсечением 
Q  ≥  0,9, которая показывает наибольшую вероятность 
захвата объекта среднее отклонение имеет значение 
между отсечениями Q ≥ 0,5 и Q ≥ 0,75. Это обосновано 
тем, что при отсечении Q ≥ 0,5 большое число точек име-
ет достаточно низкую вероятность захвата объекта и на-
ходится на краю объекта, что и вызывает такое большее 
отклонение рассчитанного центра массы объекта от ис-
тинного центра массы. 

В случае с отсечением Q ≥ 0,75 получаем лучшие ре-
зультаты с точки зрения отклонения рассчитанного гео-
метрического центра от  реального. Это связано с  тем, 
что в данном случае отсекаются точки с достаточно ма-
лыми вероятностями захвата, которые расположены 
около краёв объекта, но  при этом сохраняется доста-
точное число точек, которые при усреднении дают ко-
ординату самую близкую к реальному геометрическому 
центру объекта.

В случае с отсечением Q ≥ 0,9 начинает немного уве-
личиваться отклонение рассчитанного центра массы 
объекта от реального центра массы, при этом значение 
не  превышает значение в  случае с  отсечением Q ≥ 0,5. 
Стоит отметить, что при этом отсечение Q ≥ 0,9 пока-
зывает наименьшее отклонение главной компоненты 
объекта, которая отражает ориентацию объекта в  про-
странстве, от реальной ориентации объекта по оси нор-

Таблица 1. 
Отклонение полученных алгоритмом параметров 

объекта от реальных параметров объекта

Отсечение Q Q ≥ 0,5 Q ≥ 0,75 Q ≥ 0,9

Среднее арифметическое отклонение 
рассчитанного центра массы от истинного, 
мм

2,82 2,92 2,63

Максимальное отклонение рассчитанного 
центра массы объекта от истинного, мм

5,02 5,44 5,37

Среднее арифметическое отклонение 
главной компоненты от реальной ориен-
тации объекта, °

2,28 1,89 1,92

Максимальное отклонение главной 
компоненты от реальной ориентации 
объекта, °

6,09 6,08 5,64
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мальной к рабочей области. Следовательно, можно сде-
лать вывод о том, что отклонение рассчитанного центра 
массы объекта имеет меньшее влияние, чем отклонение 
рассчитанной ориентации объекта от реальной, однако, 
важно, что оба фактора оказывают влияние на  вероят-
ность захвата объекта.

Хотя метод [10, с. 1149–1161] демонстрирует более 
высокую точность (98.9 % против 95.6 % в  нашем слу-
чае), ключевое преимущество нашего подхода — в  его 
универсальности: не  требует переобучения для новых 
объектов; позволяет снизить размерность данных (пе-
реход от  Q-map к  главным компонентам), что снижает 
вычислительную нагрузку ещё и за счёт снижения числа 
выходов нейросети.

Один из недостатков нашего метода в том, что на те-
кущий момент данный подходи применим к  объектам 
симметричной, вытянутой вдоль одного из  измерений, 
формой, однако в  случае производственных задач за-
частую встречаются симметричные вытянутые объекты: 
небольшие коробки, различные скобяные изделия (бол-
ты, винты) и подобные объекты.

Заключение

В данной работе предложен модифицированный ал-
горитм генерации положений захвата на основе GGCNN 
с интеграцией метода главных компонент (PCA), что по-
зволило повысить точность роботизированного захвата 
объектов без необходимости переобучения нейронной 
сети. Основные результаты исследования заключаются 
в следующем:

1.	 Повышение вероятности успешного захвата: При-
менение PCA к карте вероятности захвата (Q-map) 
позволило увеличить вероятность успешного 
захвата объекта до  95,6 % при отсечении точек 
с вероятностью захвата Q ≥ 0,9. Это существенно 
выше исходного показателя в  45 %, полученного 
при использовании только GGCNN.

2.	 Снижение вычислительной нагрузки: Использо-
вание PCA позволило уменьшить размерность 

выходных данных нейросети, перейдя от двумер-
ной карты вероятностей к  одномерной главной 
компоненте, что снизило нагрузку на систему без 
значительной потери точности.

3.	 Уменьшение трудозатрат: Предложенный метод 
исключает необходимость переобучения нейро-
сети для новых объектов, что значительно сокра-
щает затраты на  создание и  разметку дополни-
тельных датасетов.

4.	 Точность определения параметров захвата: Экс-
перименты показали, что отклонение рассчитан-
ного центра массы объекта от  реального соста-
вило в  среднем 2,63  мм, а  отклонение главной 
компоненты от истинной ориентации объекта — 
1,92°, что является приемлемым для практическо-
го применения.

Таким образом, предложенный гибридный подход, 
сочетающий генеративную свёрточную нейронную сеть 
GGCNN и метод главных компонент, демонстрирует вы-
сокую эффективность в задачах роботизированного за-
хвата. Он обеспечивает адаптивность системы к новым 
объектам без дополнительного обучения, снижает вы-
числительные затраты и  увеличивает точность позици-
онирования.

Дальнейшие исследования могут быть направлены на:
•	 Оптимизацию алгоритма для работы с  несимме-

тричными объектами,
•	 Интеграцию дополнительных методов фильтра-

ции для повышения устойчивости к шумам,
•	 Тестирование метода в  реальных условиях 

(не только в симуляции) с различными типами за-
хватов.

Применение данного подхода может быть полезно 
в промышленной автоматизации, логистике и сервисной 
робототехнике, где требуется высокая скорость и  точ-
ность захвата разнообразных объектов без постоянной 
перенастройки системы.
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