DOI 10.37882/2223-2966.2025.08.32

## СОВРЕМЕННЫЕ МЕТОДЫ МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ В ТЕХНОЛОГИЯХ ЛАЗЕРНОЙ ОБРАБОТКИ МАТЕРИАЛОВ

# MODERN METHODS OF MATHEMATICAL MODELING IN LASER MATERIAL PROCESSING TECHNOLOGIES

D. Silantev

Summary. The article presents a systematic analysis of current research in the field of laser material processing with an emphasis on the mathematical models employed. Various classes of computational methods are reviewed, including transient heat transfer models based on the unsteady heat conduction equation, finite element modeling (COMSOL, ANSYS), multiscale approaches (DFT, molecular mechanics), statistical experimental design methods, and models of plasmonic effects and nonlinear optics. Special attention is paid to hybrid computational schemes that combine different physical approaches. The effectiveness of mathematical modeling for predicting laser processing outcomes and optimizing technological parameters is demonstrated.

*Keywords*: laser processing of materials, mathematical modeling, heat conduction equation, finite element analysis, DFT modeling, plasmonic effects, nonlinear optics, digital twins, multiscale modeling, optimization of technological processes.

#### Введение

овременные технологии лазерной обработки материалов представляют собой мощный инструмент для модификации структурных и функциональных свойств широкого класса веществ. В данном обзоре систематизированы ключевые исследования, посвященные математическому моделированию и экспериментальной верификации процессов лазерного воздействия на различные материалы, включая полупроводниковые соединения, металлические сплавы и полимерные композиты.

Анализ рассмотренных работ демонстрирует высокую эффективность численных методов в прогнозировании тепловых полей, фазовых превращений и морфологических изменений при лазерной обработке. Особое внимание уделено корреляции между теоретическими моделями и экспериментальными данными, что подтверждает адекватность применяемых математических подходов.

Практическая значимость исследований заключается в разработке оптимизированных режимов лазерного

#### Силантьев Данила Михайлович

Acпирант, Московский государственный технологический университет «Станкин» silad.micher@mail.ru

Аннотация. В статье представлен системный анализ современных исследований в области лазерной обработки материалов с акцентом на применяемые математические модели. Рассмотрены различные классы вычислительных методов, включая: модели теплопереноса на основе нестационарного уравнения теплопроводности, конечно-элементное моделирование (COMSOL, ANSYS), многомасштабные подходы (DFT, молекулярная механика), статистические методы планирования экспериментов, модели плазмонных эффектов и нелинейной оптики. Особое внимание уделено гибридным вычислительным схемам, объединяющим различные физические подходы. Показана эффективность математического моделирования для прогнозирования результатов лазерной обработки и оптимизации технологических параметров.

Ключевые слова: лазерная обработка материалов, математическое моделирование, уравнение теплопроводности, конечно-элементный анализ, DFT-моделирование, плазмонные эффекты, нелинейная оптика, цифровые двойники, многомасштабное моделирование, оптимизация технологических процессов.

воздействия для решения прикладных задач в микроэлектронике, медицинском материаловедении и приборостроении. Полученные результаты создают основу для дальнейшего совершенствования технологий прецизионной обработки материалов с заданными характеристиками.

### Обзор литературы

В первой работе [3] представлено комплексное исследование лазерной модификации карбида кремния, сочетающее строгое математическое моделирование с экспериментальной верификацией процессов абляции. Центральным элементом исследования является разработанная авторами физико-математическая модель теплопереноса, описываемая нестационарным уравнением теплопроводности с граничными условиями третьего рода. Модель учитывает температурную зависимость теплофизических параметров SiC, включая нелинейность коэффициента теплопроводности ( $\lambda$ (T) = 4.8 + 0.0023T Вт/(см·K)) и объемной теплоемкости (Cv(T) = 27.25 + 0.015T Дж/(см³-град)). Численное решение реализовано методом конечных разностей с использованием

неявной схемы, обеспечивающей устойчивость расчетов при шагах дискретизации hx = hy = 20 мкм и t = 4 нс.

Экспериментальные исследования лазерной абляции проводились на установке LPKF ProtoLAserU3 с модулированной добротностью (частота 100 кГц,  $\lambda = 355$  нм), демонстрируя хорошее соответствие с модельными предсказаниями. Особый интерес представляют результаты по определению пороговых параметров абляции: при плотности энергии 1.4 Дж/см² наблюдается переход от доминирования термических механизмов разрушения к реализации эффекта кулоновского взрыва. Анализ морфологии обработанных поверхностей методом атомно-силовой микроскопии выявил формирование периодических наноструктур с характерным размером 150 $\pm$ 20 нм, что коррелирует с длиной поверхностной плазмонной волны для используемой длины волны излучения.

Прикладное значение работы подчеркивается разработанной методикой прецизионного формирования меза-структур с управляемыми геометрическими параметрами. Авторы установили, что варьирование скорости сканирования в диапазоне 50–200 мм/с при мощности 3.5–6 Вт позволяет контролировать глубину рельефа от 3 до 25 мкм с точностью ±0.8 мкм. Полученные результаты открывают новые возможности для создания SiCкомпонентов силовой электроники и СВЧ-устройств, где требования к точности обработки поверхности особенно критичны.

В другой работе [8] исследуется влияние наносекундного лазерного излучения ( $\lambda = 1064$  нм) на электрические свойства кристаллических пленок селенида свинца (PbSe). Ключевой акцент сделан на взаимосвязи между лазерно-индуцированным тепловым воздействием, структурными изменениями и электрофизическими характеристиками материала.

Использовался импульсный Yb:волоконный лазер с длительностью импульсов 4–50 нс и частотой следования 5–120 кГц. В зависимости от плотности мощности выделены два режима:

- Режим потемнения (q ≈ 6.4–18.2 МВт/см², Т ≈ 101°C) характеризуется увеличением поглощения и анизотропным изменением сопротивления.
- 2. Режим просветления (q  $\approx$  0.9–4.4 МВт/см², T  $\approx$  353°C) сопровождается образованием аморфного оксида свинца (PbO), приводящего к резкому росту сопротивления (до 27-кратного).

Экспериментально подтверждено, что направление тока относительно лазерных треков существенно влияет на проводимость: при параллельной ориентации сопротивление снижается на 44 %, а при перпендикулярной — возрастает на 153 %. Это объясняется форми-

рованием проводящих каналов вдоль треков и барьерных зон на границах модифицированных областей.

Для анализа температурных полей разработана модель, учитывающая:

- Локальный нагрев в зоне лазерного пятна (диаметр 70–150 мкм).
- Теплоотвод в подложку и окружающую среду.
- Граничные условия с коэффициентами теплоотдачи: 25 Вт/(м²-К) (пленка-воздух) и 100 Вт/(м²-К) (пленка-подложка).

Модель продемонстрировала хорошее согласие с экспериментальными данными:

- 1. Для режима потемнения расчетная температура в пятне составила 145°C (эксперимент: 101°C).
- 2. Для просветления 300°С (эксперимент: 353°С). Небольшие расхождения связаны с неучетом нелинейных эффектов, таких как зависимость поглощения от температуры.

Критические параметры:

- Градиенты температуры: 0.8 К/мкм (потемнение) и 1.8 К/мкм (просветление).
- Скорость нагрева: до 4.5 К/мс, что на порядки превышает возможности печного отжига.
- Пространственное разрешение: возможность создания структур с размерами до 100 мкм.

Применение импульсного лазерного излучения позволяет контролируемо модифицировать пленки PbSe, избегая деградации, характерной для высокотемпературного отжига. Разработанная модель адекватно описывает тепловые процессы и может быть использована для оптимизации параметров обработки. Полученные результаты открывают перспективы для создания высокочувствительных ИК-детекторов с заданными электрофизическими свойствами.

В следующей статье [7] исследуется влияние параметров лазерного вспенивания на формирование микрорельефа поверхности титанового сплава ВТ6 с целью оптимизации остеоинтегративных свойств медицинских имплантатов. Авторы подчеркивают, что первоначальная механическая фиксация имплантата (press-fit) постепенно сменяется биологической остеоинтеграцией, включающей три ключевые стадии: остеоиндукцию, остеокондукцию и остеомоделирование. Для управления этим процессом предложена технология лазерного вспенивания, которая создает развитую пористую структуру без изменения химического состава материала, что принципиально отличает ее от традиционных методов обработки поверхности.

Основное внимание уделено математическому моделированию процесса лазерного воздействия с исполь-

зованием ротатабельного униформ-планирования эксперимента. В ходе исследования варьировались четыре ключевых параметра: мощность лазера (1050–1650 Вт), скорость подачи (5050–9500 мм/мин), скважность импульса (23–63 %) и давление газа (1–9 Ваг). В результате обработки экспериментальных данных получена нелинейная регрессионная модель, описывающая зависимость глубины пор от параметров обработки. Особый интерес представляет квадратичный характер зависимостей, свидетельствующий о наличии оптимальных значений параметров для достижения требуемой геометрии пор (100–300 мкм по ширине и до 1500 мкм по глубине).

Важным аспектом исследования стало изучение влияния газовой среды на химический состав поверхности. Показано, что использование аргона при давлениях выше 8 Ваг позволяет минимизировать образование оксидов и карбидов, которые негативно влияют на механические свойства поверхностного слоя. Лазерное воздействие в воздушной среде приводит к появлению в поверхностном слое значительного количества кислородсодержащих соединений, увеличивающих хрупкость материала. Электронная микроскопия подтвердила, что обработка в аргонной среде сохраняет химическую чистоту поверхности, что критически важно для обеспечения стабильной остеоинтеграции.

Авторы делают вывод о перспективности предложенной технологии, подчеркивая возможность точного управления геометрией пор за счет регулирования параметров лазерного воздействия. Полученные результаты позволяют рекомендовать конкретные режимы обработки: мощность излучения 1.2 кВт, скорость подачи 8000 мм/мин, скважность импульса 43 %, давление аргона 8 Ваг. Эти параметры обеспечивают формирование поверхности с оптимальными для остеоинтеграции характеристиками. Особое значение имеет вывод о необходимости поддержания давления газа на уровне не менее 8 Ваг для полного удаления остатков расплава из зоны обработки, что подтверждено экспериментальными данными.

Статья посвящена математическому моделированию процессов селективного лазерного плавления (SLM) при изготовлении высокопористых имплантатов из сплава ТібАl4V. Основное внимание уделено анализу тепловых полей, формирующихся под воздействием лазерного излучения, и их влиянию на качество получаемых изделий. Авторы подчеркивают, что прямое измерение температурных полей в зоне обработки затруднительно из-за высокой скорости лазерного воздействия, что делает численное моделирование ключевым инструментом для прогнозирования параметров процесса.

В другой работе [5] использована конечно-элементная модель, разработанная в COMSOL Multiphysics, ко-

торая учитывает теплопередачу, фазовые превращения, конвективное охлаждение и излучение. Модель позволяет анализировать распределение температуры в зависимости от мощности лазера, времени экспозиции и расстояния между точками засветки. Результаты моделирования сопоставлены с экспериментальными данными, полученными при сплавлении единичных дорожек на установке Realizer SLM 50. Установлено, что отклонения расчетных значений ширины дорожки и глубины проплавления от экспериментальных не превышают 5–10 %, что подтверждает адекватность модели.

Особое внимание уделено оптимизации технологических режимов для минимизации дефектов, таких как пористость, шероховатость поверхности и остаточные напряжения. Показано, что сочетание высокой мощности лазера с низкой скоростью сканирования приводит к перегреву и испарению материала, тогда как недостаточная мощность вызывает неполное проплавление слоя. Наилучшие результаты достигнуты при промежуточных значениях параметров, обеспечивающих стабильное формирование структуры имплантата.

В заключении отмечается, что разработанная модель позволяет прогнозировать геометрические и механические характеристики изделий, что особенно важно для создания высокопористых структур с заданными свойствами. Полученные результаты могут быть использованы для оптимизации SLM-процессов в медицинской имплантологии, включая изготовление градиентных материалов с регулируемой жесткостью.

В иной статье [1] исследуется влияние многократного использования порошка полиамида РАб в процессе лазерного спекания (LS) на его свойства и качество получаемых изделий. Основное внимание уделено математическому моделированию и анализу изменений морфологии частиц, плотности, кристалличности и вязкости порошка, а также их влиянию на процесс лазерного спекания. Использование лазера в данном контексте рассматривается как ключевой фактор, определяющий степень консолидации частиц и качество конечных изделий.

Исследование начинается с качественного анализа изменений формы, размера и распределения частиц РА6 при повторном использовании. На основе микроскопических изображений (увеличение 500× и 1000×) показано, что с увеличением числа итераций обработки порошок подвергается агломерации, что приводит к снижению насыпной плотности (с 0,5 до 0,33–0,35 г/см³). Математическая обработка данных позволила выявить корреляцию между количеством циклов переработки и ростом агломератов, что негативно влияет на упаковку частиц и, как следствие, на плотность спеченных изделий.

Ключевым аспектом работы является анализ тепловых свойств порошка и спеченных образцов с помощью дифференциальной сканирующей калориметрии (DSC). Установлено, что кристалличность порошка увеличивается с 25 % до 31 % после нескольких итераций из-за эффекта отжига в камере LS. Это требует корректировки параметров лазерного воздействия, поскольку для плавления более кристаллического материала необходима повышенная энергия. Однако в данном эксперименте мощность лазера оставалась постоянной, что привело к ухудшению консолидации частиц и росту пористости изделий.

Моделирование реологических свойств с использованием регрессии Карро-Ясуды показало увеличение вязкости порошка с ростом числа итераций, что связано с постконденсацией полимерных цепей. Это подтверждается данными о росте молекулярной массы (с 75 970 до 126 340 г/моль). Ухудшение текучести расплава негативно сказалось на качестве спекания, что подтвердили механические испытания: прочность и модуль упругости образцов снижались с каждой последующей итерацией.

В следующей статье [4] исследуется процесс лазерной сварки-пайки разнородных сплавов на основе титана и алюминия с использованием численного моделирования. Основная сложность заключается в образовании хрупких интерметаллидных фаз при смешивании расплавов, что ухудшает механические свойства соединения. Для решения этой проблемы предложена математическая модель теплопереноса в квазистационарном приближении, учитывающая фазовые переходы и краевые условия лазерного воздействия.

Модель основана на трёхмерном уравнении теплопроводности, решаемом методом коллокации и наименьших квадратов на адаптивной сетке. Особое внимание уделено параметрам лазерного воздействия: мощности, скорости перемещения луча и расстоянию до поверхности контакта. Расчёты показали, что при мощности 2.28 кВт и скорости 1.8 м/мин оптимальное расстояние составляет 0.5–1 мм, что обеспечивает нагрев алюминия до температуры плавления без расплавления титана. Время контакта расплава менее 0.13 с предотвращает образование интерметаллидов.

В другой работе [2] исследуется теплопроводность многослойных композиционных материалов методом лазерной вспышки (LFA), с учетом влияния граничного термического сопротивления между слоями. Ключевая проблема заключается в том, что стандартные импульсные методы, основанные на анализе температурного отклика тыльной поверхности образца после лазерного воздействия, дают значительную погрешность для тонких и многослойных структур. Это связано с конечной длительностью лазерного импульса (~3–4 мс), дискрети-

зацией сигнала АЦП (500 кГц) и, главное, — с неидеальным тепловым контактом на межфазных границах.

Для учета этих эффектов применяется трехслойная математическая модель, где термическое сопротивление составного образца описывается аддитивной суммой сопротивлений каждого слоя и контактных границ. Экспериментально показано, что при чистом контакте «металл-металл» погрешность измерений достигает 50 % из-за микронеровностей поверхностей, приводящих к точечному теплообмену. Введение высокотеплопроводных прослоек (графитовая смазка, силиконовое масло) снижает контактное сопротивление на порядок, что подтверждается согласованием данных с однослойной моделью.

Особый интерес представляет численное моделирование теплопереноса на микроуровне (например, в COMSOL или ANSYS), позволяющее связать морфологию поверхности с эффективным термическим сопротивлением. Однако авторы отмечают, что для точного моделирования требуется предварительное исследование микроструктуры контакта, что усложняет методику. Таким образом, несмотря на высокую точность LFA-метода для монолитных образцов, при работе с многослойными системами необходимо либо минимизировать контактные потери, либо вводить поправочные коэффициенты, основанные на экспериментальных данных.

В иной работе [9] исследуется механизм гигантского комбинационного рассеяния (ГКР) в системе пластиковых микросфер (300 нм), частично покрытых серебряной нанопленкой. Авторы применяют электродипольную модель, где молекула, возбуждаемая лазером на длине волны 532 нм (зелёный диапазон), излучает стоксов сигнал со сдвигом 1000 см<sup>-1</sup>, что соответствует 562 нм. Моделирование в COMSOL Multiphysics показывает, что при толщине серебряного слоя 10–24 нм возникает резонансное усиление электромагнитного поля за счёт возбуждения локализованных плазмонов.

Ключевой вывод: максимальное усиление ГКР-сигнала достигается, когда дипольный излучатель расположен вблизи металлической поверхности (~1 нм), а толщина серебра оптимизирована под плазмонный резонанс. Интересно, что даже частичное покрытие сферы («серебряная шляпка») сохраняет эффект, хотя поле при этом локализуется на границе раздела. Экспериментальные СЭМ-изображения подтверждают морфологию таких структур.

В следующей работе [6] исследуются нелинейные оптические свойства ниобата лития (LiNbO $_3$ ), проявляющиеся при взаимодействии кристалла с лазерным излучением. Математическое описание основано на разложении тензора поляризации в ряд по степеням

напряженности электрического поля, где квадратичная нелинейность обусловлена электрооптическим эффектом Поккельса. Анализ изменения оптической индикатрисы кристалла под действием внешнего поля проводится через решение задачи условной оптимизации для определения главных показателей преломления, что позволяет рассчитать фазовую задержку между обыкновенной и необыкновенной волнами. Численное моделирование в Wolfram Mathematica подтверждает возможность управления фазовым сдвигом вплоть до прадиан при напряженности поля порядка 150 кВ/м.

Экспериментальные исследования взаимодействия лазерного излучения ( $\lambda = 532$  нм) с кристаллом LiNbO<sub>3</sub> включали анализ коноскопических картин и измерение фазовых характеристик. Установлено, что приложенное электрическое поле вызывает поворот эллипсоида показателей преломления, что приводит к модуляции интенсивности прошедшего излучения. Полученные данные хорошо согласуются с теоретическими предсказаниями: измеренное напряжение полуволновой модуляции составило 920 В при расчетном значении 919.98 В. Особое внимание уделено влиянию кристаллографической ориентации на электрооптические коэффициенты, что проявляется в анизотропии нелинейного отклика.

В последней работе [10] использован комбинированный подход математического моделирования, основанный на методах нелокального функционала плотности (DFT) и молекулярной механики (MM), что позволило исследовать структурные и энергетические характеристики многослойных наночастиц Si/Ge.

#### Заключение

Проведенный анализ современных исследований в области лазерной обработки материалов выявил эффективность применения различных классов ма-

тематических моделей для описания сложных физико-химических процессов. В рассмотренных работах продемонстрирована адекватность следующих математических подходов:

- 1. Модели теплопереноса на основе нестационарного уравнения теплопроводности с граничными условиями третьего рода, включая учет температурной зависимости теплофизических параметров. Численное решение реализовано методами конечных разностей и конечных элементов с применением неявных схем, обеспечивающих устойчивость расчетов при характерных пространственных (20 мкм) и временных (4 нс) шагах.
- 2. Многомасштабные модели, сочетающие:
- макроскопическое описание тепловых полей;
- мезоскопическое моделирование фазовых переходов;
- микроскопический анализ плазмонных эффектов и нелинейных оптических явлений.
- 3. Статистические методы планирования экспериментов (ротатабельный униформ-план) и обработки данных, позволившие установить квадратичные зависимости между параметрами обработки и характеристиками материалов.
- 4. Квантово-механические подходы (DFT-моделирование) в сочетании с методами молекулярной механики для анализа структурных изменений на атомарном уровне.

Особое значение имеет разработка гибридных вычислительных схем, интегрирующих:

- конечно-элементное моделирование (COMSOL, ANSYS);
- анализ электромагнитных полей с учетом плазмонных резонансов;
- реологические модели полимерных систем (регрессия Карро-Ясуды).

#### ЛИТЕРАТУРА

- Бакланов Дмитрий Владимирович, Васильев Илья Михайлович, Воротилин Михаил Сергеевич, Земцова Ольга Григорьевна. Порошковое старение полиамида раб при лазерном спекании и его влияние на характеристики прочности композитной гильзы // Известия ТулГУ. Технические науки. 2023. №12. URL: https://cyberleninka.ru/article/n/poroshkovoe-starenie-poliamida-pa6-pri-lazernom-spekanii-i-ego-vliyanie-na-harakteristiki-prochnosti-kompozitnoy-gilzy.
- 2. Баринов Д.Я. Исследование теплопроводности составных многослойных образцов // Труды ВИАМ. 2023. №7 (125). URL: https://cyberleninka.ru/article/n/issledovanie-teploprovodnosti-sostavnyh-mnogosloynyh-obraztsov.
- 3. Евстигнеев Д.А., Корнышев Н.П. Исследование модификации карбида кремния методами лучевой эрозии в условиях фазового состава атмосферы: обзор // Вестник НовГУ. 2024. №1 (135). URL: https://cyberleninka.ru/article/n/issledovanie-modifikatsii-karbida-kremniya-metodami-luchevoy-erozii-v-usloviyah-fazovogo-sostava-atmosfery-obzor.
- 4. Исаев Вадим Исмаилович, Шапеев Василий Павлович, Черепанов Анатолий Николаевич. Численное моделирование лазерной сварки-пайки сплавов на основе титана и алюминия // Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2024. №5 (115). URL: https://cyberleninka.ru/article/n/chislennoe-modelirovanie-lazernoy-svarki-payki-splavov-na-osnove-titana-i-alyuminiya.
- 5. Килина Полина Николаевна, Сиротенко Людмила Дмитриевна, Козлов Михаил Сергеевич, Дроздов Андрей Александрович. Теплофизические аспекты обеспечения качества высокопористых имплантатов с ячеистой структурой, полученных методом селективного лазерного плавления // Российский журнал биомеханики. 2023. №4. URL: https://cyberleninka.ru/article/n/teplofizicheskie-aspekty-obespecheniya-kachestva-vysokoporistyh-implantatov-s-yacheistoy-strukturoy-poluchennyh-metodom.

- 6. Матвеев Владимир Александрович, Гришенцев Алексей Юрьевич, Коробейников Анатолий Григорьевич. Разработка и изготовление электрооптического модулятора на основе эффекта Поккельса // Приборостроение. 2025. №3. URL: https://cyberleninka.ru/article/n/razrabotka-i-izgotovlenie-elektroopticheskogo-modulyatora-na-osnove-effekta-pokkelsa.
- 7. Митрошин Александр Николаевич, Нестеров Сергей Александрович, Геращенко Сергей Михайлович, Ксенофонтов Михаил Анатольевич. Способ повышения остеоинтеграции изделий медицинской техники на основе лазерного вспенивания металлических поверхностей // Модели, системы, сети в экономике, технике, природе и обществе. 2023. №3 (47). URL: https://cyberleninka.ru/article/n/sposob-povysheniya-osteointegratsii-izdeliy-meditsinskoy-tehniki-na-osnove-lazernogo-vspenivaniya-metallicheskih-poverhnostey.
- 8. Ольхова Анастасия Александровна, Патрикеева Алина Александровна, Бутяева Мария Алексеевна, Пушкарева Александра Евгеньевна, Авилова Екатерина Александровна, Москвин Михаил Константинович, Сергеев Максим Михайлович, Вейко Вадим Павлович. Лазерно-индуцированное тепловое воздействие на электрические характеристики фоточувствительных пленок селенида свинца // Hayчно-технический вестник информационных технологий, механики и оптики. 2024. №1. URL: https://cyberleninka.ru/article/n/lazerno-indutsirovannoe-teplovoe-vozdeystvie-na-elektricheskie-harakteristiki-fotochuvstvitelnyh-plenok-selenida-svintsa.
- 9. Сарычев А.К., Иванов А.В., Быков И.В., Д Басманов В., Прусаков К.А., Мочалов К.Е. Усиление электромагнитного излучения молекул в пластиковых микросферах с серебряной шляпкой // Современная электродинамика. 2024. №6 (14). URL: https://cyberleninka.ru/article/n/usilenie-elektromagnitnogo-izlucheniya-molekul-v-plastikovyh-mikrosferah-s-serebryanoy-shlyapkoy.
- 10. Терентьева Юлия Владимировна, Безносюк Сергей Александрович. Компьютерное моделирование многослойных наночастиц на базе элементарных полупроводников // Известия АлтГУ. 2024. №1 (135). URL: https://cyberleninka.ru/article/n/kompyuternoe-modelirovanie-mnogosloynyh-nanochastits-na-baze-elementarnyh-poluprovodnikov.

© Силантьев Данила Михайлович (silad.micher@mail.ru) Журнал «Современная наука: актуальные проблемы теории и практики»