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Summary. This paper presents a system that integrates ECG data storage 
and analysis within a unified architecture. It combines a database 
for standardized record management with a signal analysis module 
implementing an adaptive R-wave detection algorithm. The method 
applies median filtering for baseline drift suppression and dynamic 
threshold updating for improved accuracy under noise and amplitude 
variation. Implemented in PostgreSQL, the system supports data import, 
visualization, and annotation. Testing on the MIT-BIH Arrhythmia 
Database achieved 97.5  % accuracy, confirming its effectiveness for 
biometric authentication and telehealth monitoring.
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Аннотация. Представлена система, объединяющая хранение и  анализ 
электрокардиографических (ЭКГ) данных. Архитектура включает базу дан-
ных для унифицированного управления записями и модуль анализа сигна-
лов с алгоритмом адаптивного обнаружения R-волн. Алгоритм применяет 
медианную фильтрацию для подавления дрейфа базовой линии и динами-
ческое обновление порога для повышения точности при шуме и изменении 
амплитуды. Система реализована на  PostgreSQL, поддерживает загрузку, 
визуализацию и аннотирование данных. Тестирование на MIT-BIH Arrhythmia 
Database показало точность 97,5  %, подтверждая эффективность подхода 
для биометрической аутентификации и телемедицинского мониторинга.

Ключевые слова: ЭКГ, R-волнa, база данных, биометрическая аутентифика-
ция, медианный фильтр, MIT-BIH, автоматическое обнаружение, обработка 
сигналов.

Введение 

В последние годы наблюдается стремительное раз-
витие технологий мониторинга состояния здоро-
вья человека, чему способствуют миниатюризация 

сенсорных устройств и  широкое распространение мо-
бильных технологий. Современные носимые сенсоры 
позволяют осуществлять непрерывную регистрацию 
физиологических параметров, которые ранее измеря-
лись только в клинических условиях [1]. Среди них осо-
бое место занимают электрокардиографические (ЭКГ) 
сигналы, отражающие электрическую активность серд-
ца и  обеспечивающие высокую информативность при 
оценке состояния сердечно-сосудистой системы и ран-
нем выявлении патологий. С  ростом интереса к  персо-
нализированной медицине и  дистанционному наблю-
дению возрастает потребность в надёжных, безопасных 
и  стандартизированных средствах хранения и  анализа 
ЭКГ-данных [2]. Если традиционные медицинские систе-
мы ориентированы на клиническую диагностику, то со-
временные приложения требуют унифицированных баз 
данных, обеспечивающих масштабируемое хранение, 

оперативный доступ и  автоматическую обработку сиг-
налов [3]. Однако разнообразие форматов ЭКГ-записей 
и  различия в  структуре данных, используемых различ-
ными устройствами и  хранилищами (ECG-ID, MIT-BIH, 
Holter), создают трудности интеграции и снижают совме-
стимость систем. Ключевая задача анализа ЭКГ — обна-
ружение R-волн комплекса QRS [4], важных для расчёта 
ритма и  аутентификации. Однако шумы и  артефакты 
осложняют процесс, а методы Pan–Tompkins, SQRS, QLV, 
CWT остаются вычислительно затратными и  чувстви-
тельными к помехам [5].

Цель данной работы — разработка интегрированной 
системы для хранения и анализа ЭКГ-данных, объединя-
ющей централизованное управление, автоматическую 
обработку и  визуализацию сигналов. Статья включает: 
обзор существующих методов раздел 2, архитектуру 
системы раздел 3, алгоритм детекции R-волн раздел 4, 
результаты экспериментов раздел 5 и заключение раз-
дел 6.
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Литературный обзор

Обнаружение R-волн является одной из  ключевых 
и  наиболее исследованных задач анализа электрокар-
диографических (ЭКГ) сигналов. Пик R, являющийся ча-
стью комплекса QRS, отражает процесс деполяризации 
желудочков сердца и служит основным ориентиром при 
вычислении частоты сердечных сокращений, анализе 
вариабельности ритма и классификации форм сигналов 
[6]. За  последние десятилетия предложено множество 
алгоритмов, направленных на повышение точности, ско-
рости и  устойчивости детекции R-волн при различных 
условиях записи [7].

Классическим и  наиболее известным подходом яв-
ляется алгоритм Pan–Tompkins (PT), ставший стандартом 
для обработки ЭКГ в реальном времени [8]. Он включает 
последовательность этапов — полосовую фильтрацию, 
вычисление производной, возведение в квадрат и инте-
грирование по  скользящему окну, что позволяет выде-
лять комплекс QRS и подавлять шумы. Однако PT требует 
тонкой настройки параметров и чувствителен к дрейфу 
базовой линии и  артефактам движения [9]. Модифика-
ция этого метода — SQRS, реализованная в библиотеке 
PhysioNet WFDB [10], использует фиксированное окно 
после обнаруженной Q-волны для уточнения положе-
ния R-пика, что повышает устойчивость, но  сохраняет 
зависимость от формы сигнала.

Морфологические методы включают Quad Level Vector 
(QLV), использующий среднее абсолютное отклонение 

амплитуды от  базовой линии для выделения областей 
с повышенной энергией [11]. Он эффективен на стабиль-
ных сигналах, но  теряет точность при шуме. Алгоритм 
Continuous Wavelet Transform (CWT) с функцией «мекси-
канская шляпа» выделяет R-пики по локальной энергии, 
однако требует значительных вычислительных ресур-
сов, ограничивая использование в  реальном времени 
[12]. Развитие получили также корреляционные методы, 
такие как Instantaneous Heart Rate (IHR), применяющий 
кратковременную автокорреляцию (STAC) для выявле-
ния периодических структур без фиксированного поро-
га. Метод устойчив к шуму, но сложен вычислительно [13].

Сравнение методов показывает: фильтрационно-по-
роговые (PT, SQRS) обеспечивают простоту и  скорость, 
а морфологические и вейвлетные (QLV, CWT) — точность 
при больших затратах. Предложенный адаптивный алго-
ритм с  медианной фильтрацией сочетает оба подхода, 
обеспечивая баланс и устойчивость [14].

Материалы и методы

Предлагаемая система объединяет управление дан-
ными и  анализ сигналов в  единой архитектуре, обе-
спечивающей эффективное хранение и  обработку 
ЭКГ-записей. Она включает два основных модуля: базу 
данных для организации и доступа к записям и модуль 
анализа, реализующий алгоритм детекции R-волн и визу-
ализацию сигналов. Общая структура показана на Рис. 1.

Рис. 1. Общая архитектура системы
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База данных является центральным элементом систе-
мы, обеспечивающим хранение ЭКГ-сигналов в  унифи-
цированной форме. Реализована на PostgreSQL, она под-
держивает масштабируемость и надёжность. Структура 
включает четыре взаимосвязанные таблицы: сигналы, 
метаданные, аннотации и субъекты. В них хранятся зна-
чения ЭКГ, параметры записи, временные метки R-волн 
и демографические данные пользователей. Все таблицы 
связаны уникальным идентификатором (Record ID), что 
гарантирует целостность и  облегчает выборку данных. 
Схематическая структура базы представлена на Рис. 2.

Система поддерживает импорт ЭКГ-записей в форма-
тах MFER, MIT-BIH и ABS1 [15], автоматически конверти-
руя их в  стандарт MFER [16]. Архитектура легко расши-
ряется добавлением новых модулей преобразования, 
обеспечивая гибкость и  совместимость с  различными 
устройствами регистрации ЭКГ. Для анализа и  визуаль-
ного контроля реализован интерактивный модуль про-
смотра ЭКГ, позволяющий отображать многоканальные 
сигналы, перемещаться по временной шкале и просма-
тривать автоматически обнаруженные R-пики. Интер-
фейс состоит из  окна отображения сигнала и  панели 
временной навигации, обеспечивая удобное взаимо-

действие пользователя с системой и контроль результа-
тов обработки.

Модульная архитектура системы обеспечивает рас-
ширяемость и  независимость компонентов. Каждый 
элемент — база данных, модуль обработки и  визуа-
лизация — может функционировать автономно или 
в  составе единой платформы. Такой подход упрощает 
сопровождение, позволяет интегрировать внешние ана-
литические инструменты и  поддерживает использова-
ние системы как в исследовательских лабораториях, так 
и в телемедицинских приложениях.

Алгоритм обнаружения R-волн

Автоматическое обнаружение R-волн является клю-
чевым элементом системы анализа ЭКГ. Алгоритм со-
четает высокую точность и  низкую вычислительную 
сложность, включая три этапа: удаление дрейфа, поиск 
R-пиков и адаптивное обновление порога Рис. 3.

Первый этап устраняет дрейф базовой линии, вы-
званный дыханием и движением электродов. Применя-
ется медианная фильтрация, вычисляющая среднее зна-
чение в  окне 450 мс (по  225 мс влево и  вправо) для 

Рис. 2. Структура базы данных

Рис. 3. Общая схема работы алгоритма обнаружения R-волн
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удаления низкочастотных компонентов. Очищенный 
сигнал y t( ) определяется выражением [17]:

y t x t b t( ) = ( ) � ( )

Где x t( ) — исходный сигнал, а b t( ) — значение медиан-
ного фильтра. Такое преобразование эффективно устра-
няет дрейф базовой линии, не искажая форму комплекса 
QRS.

На втором этапе выполняется поиск R-пиков с  ис-
пользованием адаптивного порога. Первоначальное 
значение порога T0 устанавливается равным 0,66 от мак-
симальной амплитуды сигнала, зарегистрированной 
в первые 10 секунд наблюдения. Алгоритм выполняется 
последовательно по следующим шагам: (1) Определяют-
ся интервалы, где y t( ) превышает текущее пороговое 
значение Tk; (2) В каждом интервале вычисляется локаль-
ный максимум, который рассматривается как кандидат 
на  R-пик; (3) Проверяется временной интервал между 
текущим кандидатом и  предыдущим обнаруженным 
R-пиком. Если он превышает 0.03 c, пик подтверждается 
как R-волна; (4) После подтверждения значение порога 
обновляется по формуле [17]:

T x Ak
i k

k

i=
= �
е0 66 1

10 9
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Где Ai  — амплитуда ранее обнаруженных R-волн. Таким 
образом, алгоритм динамически корректирует чувстви-

тельность порога в зависимости от амплитуды сигнала, 
адаптируясь к  изменениям формы волны. На  заключи-
тельном этапе производится расчёт частоты сердечных 
сокращений (ЧСС). После того как все R-пики обнаруже-
ны, мгновенная частота вычисляется как [17]:

HR
ti

= � �60
D

Где Dti  — временной интервал между двумя последова-
тельными R-пиками. Усреднение этого значения 
по  скользящему окну позволяет получить сглаженную 
оценку частоты сердечного ритма, которая используется 
для мониторинга состояния и анализа физиологических 
показателей.

Предложенный алгоритм отличается простотой 
и  адаптивностью. В  отличие от  методов Pan–Tompkins 
и CWT, он не требует сложных вычислений и статических 
параметров. Динамическое обновление порога обеспе-
чивает точное выделение R-пиков при шуме, что делает 
его пригодным для встроенных и биометрических систем.

Результаты

Для оценки эффективности системы проведены 
эксперименты с  использованием MIT-BIH Arrhythmia 
Database, содержащего 48 аннотированных двухканаль-
ных записей ЭКГ. Аннотации экспертов использовались 
как эталон, а  качество работы алгоритма оценивалось 
по трём метрикам: Precision, Recall и Accuracy. Для срав-

Рис. 4. Сравнение точности обнаружения R-волн
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нения эффективности алгоритм протестирован наряду 
с  методами Pan–Tompkins, QLV и  CWT на  одинаковых 
участках сигнала. Результаты Рис. 4–5 показывают наи-
высшую точность и устойчивость предложенного мето-
да к шумам и деформациям сигнала.

Средняя точность детекции составила 97,5 %, превы-
сив результаты Pan–Tompkins (94,1 %), QLV (92,8 %) и CWT 
(95,6 %). Наибольшее преимущество наблюдалось при 
дрейфе базовой линии и низкой амплитуде сигнала, где 
классические методы ошибались. Медианная фильтра-
ция и адаптивный порог обеспечили стабильную работу 
алгоритма. Для оценки устойчивости алгоритма данные 
разделены на  две группы: A — записи высокого каче-
ства и B — сигналы с артефактами. Средние результаты 
(Табл.  1) показали: в  группе A точность 98,3 %, полнота 
97,8 %; в группе B — 92,6 %, что на 10–12 % выше класси-
ческих методов QLV и CWT.

Рис. 6 показывает детекцию P-, QRS- и T-волн с точным 
определением R-пиков и сохранением формы сигнала.

Рис. 7 показывает влияние шума и  эффективность 
фильтрации. Верхний график демонстрирует зашумлён-
ный сигнал с  дрейфом и  искажением P- и  R-волн, ниж-
ний  — восстановленный после медианной и  низкоча-
стотной фильтрации, подтверждающий устойчивость 
алгоритма при низком отношении сигнал/шум.

Матрица ошибок Рис. 8 показывает минимальное 
число ложных и пропущенных R-волн, что подтверждает 

высокую точность и устойчивость предложенного алго-
ритма.

Для оценки вычислительной эффективности про-
ведено сравнение времени обработки (30 мин, 360 Гц, 
Рис. 9). Предложенный метод работает менее чем за 1,2 с, 
почти вдвое быстрее Pan–Tompkins и CWT, что подтверж-
дает пригодность для систем реального времени. 

Полученные результаты демонстрируют, что пред-
ложенный метод обеспечивает оптимальный баланс 
между вычислительной эффективностью и  точностью 

Таблица 1. 
Результаты работы алгоритма по группам A и B

Группа Тип данных
Точность 
(Precision 

%)

Полнота 
(Recall 

%)

Общая 
точность 
(Accuracy 

%)

Коммента-
рий

A

Сигналы высо-
кого качества 
(Precision > 0,7, 
Recall > 0,7)

98,4 97,8 98,3

Стабильная 
базовая 
линия, 
нормальная 
морфология

B
Сложные сиг-
налы с шумом 
и артефактами

93,1 92,0 92,6

Дрейф базо-
вой линии, 
артефакты 
движения

Рис. 5. Анализ устойчивости алгоритмов к шумам
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обнаружения, что делает его подходящим для интегра-
ции в масштабируемые биометрические и телемедицин-
ские платформы.

Заключение

В  работе представлена интегрированная система 
хранения и анализа ЭКГ-данных, объединяющая реляци-
онную базу данных и  адаптивный алгоритм обнаруже-
ния R-волн. Реализованная на Python и PostgreSQL, она 
обеспечивает масштабируемое хранение, визуализацию 
и аннотирование сигналов. Алгоритм с медианной филь-
трацией и адаптивным порогом точно выделяет R-пики 
даже при шуме и  дрейфе базовой линии. Тестирова-
ние на  MIT-BIH Arrhythmia Database показало точность 
97,5 %, подтверждая эффективность метода. Планирует-
ся расширение системы за  счёт мультимодальных био-
метрических подходов (ЭКГ+PPG) и внедрения нейрон-
ных сетей для повышения устойчивости.Рис. 8. Матрица ошибок обнаружения R-волн

Рис. 6. Обнаружение P-, QRS- и T-волн на фильтрованном ЭКГ-сигнале

Рис. 7. Сравнение зашумлённого и фильтрованного ЭКГ-сигнала
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Рис. 9. Сравнение времени обработки различных алгоритмов
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