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Аннотация. Традиционные методы диагностики неисправностей в сложных 
управляющих системах часто ориентированы исключительно на  механи-
ческие отказы оборудования. С  развитием интеллектуальных технологий 
и  промышленного Интернета вещей взаимосвязи между устройствами 
управления становятся все более сложными, а  условия эксплуатации — 
разнообразнее. Это делает традиционные подходы менее эффективными, 
затрудняя точное определение проблемных зон. Настоящая статья посвя-
щена разработке нового метода для выявления и анализа неисправностей 
в  управляющих системах с  использованием конволюционных нейронных 
сетей. Целью исследования является разработка алгоритма, способного 
учитывать как пространственные, так и временные характеристики сигна-
лов, возникающих в процессе функционирования управляющих систем. Это 
позволит значительно повысить точность диагностики и ускорить процесс 
идентификации неисправностей. Для достижения этой цели используется 
метод гибридной модели 2D-CNN-LSTM, сочетающей двухмерную свёрточ-
ную нейронную сеть (CNN) и рекуррентную нейронную сеть с долгой кратко-
срочной памятью (LSTM). Данный метод позволил выявить скрытые зако-
номерности в сигналах, характерные для различных типов неисправностей, 
включая дефекты, возникающие в динамике производственных процессов. 
Алгоритм был протестирован на  реальных данных с  промышленных объ-
ектов, демонстрируя высокую эффективность в  определении критичных 
моментов и мест возникновения неисправностей. Результаты исследования 
показывают перспективность применения предложенного подхода в усло-
виях современного производства, где требуется высокая степень автомати-
зации и точности диагностики. Разработанный метод может стать основой 
для создания новых систем мониторинга и раннего предупреждения неис-
правностей, что существенно повысит надежность и  безопасность работы 
сложных управляющих систем.

Ключевые слова: управление, неисправность, диагностика, промышленная 
система, нейронная сеть, данные, дискретность.
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DETECTION AND CHARACTERIZATION  
IN CONTROL SYSTEMS

S. Tyryshkin

Summary. Traditional methods of fault diagnostics in complex control 
systems are often focused solely on mechanical equipment failures. With 
the development of intelligent technologies and the Industrial Internet 
of Things, interconnections between control devices have become 
increasingly complex, while operating conditions have grown more 
diverse. This makes traditional approaches less effective, complicating 
the precise identification of problem areas. The present article is devoted 
to developing a new method for detecting and analyzing faults in 
control systems using convolutional neural networks. The research 
aims to develop an algorithm capable of accounting for both spatial 
and temporal characteristics of signals generated during the operation 
of control systems. This will significantly improve diagnostic accuracy 
and accelerate the process of identifying faults. To achieve this goal, 
we employ a hybrid model based on 2D-CNN-LSTM, combining a two-
dimensional convolutional neural network (CNN) with a long short-term 
memory recurrent neural network (LSTM). This approach allowed us to 
uncover hidden patterns in signals characteristic of various types of faults, 
including defects that arise in the dynamics of production processes. The 
algorithm was tested on real data from industrial facilities, demonstrating 
high efficiency in determining critical moments and locations of faults. 
The results indicate the potential applicability of the proposed approach 
in modern manufacturing environments, where a high degree of 
automation and diagnostic precision are required. The developed method 
could serve as the foundation for creating new monitoring systems and 
early warning systems for faults, which would substantially enhance the 
reliability and safety of complex control systems.
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Введение

Настоящее исследование направлено на разработ-
ку метода повышения точности и  эффективности 
диагностики неисправностей в дискретных управ-

ляющих системах. Основной целью работы является по-
строение и апробация алгоритма, способного выявлять 
как пространственные, так и временные аномалии в сиг-

нале, поступающем от элементов системы. Для реализа-
ции поставленной цели определены следующие задачи:

—— провести анализ современных подходов к  диа-
гностике в дискретных системах;

—— адаптировать методы глубокого обучения для ре-
шения задачи локализации неисправностей;

—— разработать и  реализовать архитектуру гибрид-
ной нейросетевой модели на базе 2D-CNN и LSTM;
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—— провести экспериментальную верификацию мо-
дели на данных с промышленных объектов.

С быстрым развитием современных отраслей про-
мышленности, стремлением к предельной эффективно-
сти, сложные производственные комплексы постепен-
но автоматизируются, усложняются и  интегрируются, 
что в  свою очередь предопределяет возросший спрос 
на более высокую безопасность и надежность управля-
ющих систем. Отказ ключевых компонентов может легко 
привести к краху всей системы. В связи с этим, в процес-
се эксплуатации промышленных комплексов технология 
диагностики неисправностей в  управляющих системах 
(ТДН) играет роль, которую сложно переоценить на пути 
обеспечения безопасности производственного процес-
са, повышения качества и эффективности работы пред-
приятия в целом.

ТДН является ключевым поддоменом промышленной 
автоматизации и  управления. Возможность проводить 
диагностику и выявлять неисправности в режиме реаль-
ного времени особенно важна для современных смарт-
производств, где понимание ситуации в  оперативном 
режиме необходимо для поддержания оптимального 
технологического потока и предотвращения каскадных 
отказов [1]. 

В тоже время, необходимо отметить, что в промыш-
ленности управляющие системы можно разделить 
на  два основных класса: непрерывные и  дискретные. 
Непрерывные системы, которые характерны, например, 
для химических, металлургических, нефтеперерабаты-
вающих производств, функционируют без остановки, 
поддерживают постоянный уровень загрузки произ-
водственных мощностей и  выпуска продукции. Такая 
устойчивая работа приводит к  относительно стабиль-
ным и предсказуемым условиям процесса, а отклонения 
от  нормы возникают плавно и, в  большинстве своем, 
связаны с  предсказуемым износом или неэффективно-
стью [2]. В связи с этим, подходы ТДН для непрерывных 
управляющих систем сосредоточены на  обнаружении 
точечных, медленно развивающихся аномалий в  этих 
стабильных условиях.

С другой стороны, дискретные управляющие систе-
мы, характерны для производств, которые работают 
в  определенной последовательности и  предполагают 
выпуск отдельных изделий или запуск избранных про-
цессов. Для таких систем характерны прерывистые 
операции старт-стоп с  изменяющимися условиями, 
и каждый цикл может иметь уникальные переходные со-
стояния, что делает обнаружение неисправностей более 
сложным из-за динамичного и  изменчивого характера 
работы. Следовательно, ТДН должны быть адаптирова-
ны к быстро меняющимся условиям и способны интер-
претировать сложные и переходные модели данных. Это 

кардинальным образом отличается от более стабильной 
и  предсказуемой среды непрерывных процессов, для 
которых вполне приемлемым является проведение по-
степенного анализа тенденций и долгосрочного монито-
ринга данных [3].

Материалы и методы

Очевидно, что подходы для диагностики двух опи-
санных выше типов управляющих систем будут разные. 
В  рамках проводимого исследования представляется 
целесообразным сосредоточить внимание на  монито-
ринге дискретных управляющих систем.

В настоящем исследовании применялась методоло-
гия, сочетающая элементы теоретического анализа и мо-
делирования на основе методов машинного обучения.

Сначала был проведён обзор литературных источ-
ников по  диагностике неисправностей в  дискретных 
управляющих системах, включая анализ преимуществ 
и  ограничений существующих подходов. Затем были 
сформированы критерии выбора исходных данных, 
на  основании которых были отобраны журнальные за-
писи систем управления с различных производственных 
участков.

Подготовка данных включала нормализацию, размет-
ку вручную и  последующее разбиение на  обучающую, 
валидационную и тестовую выборки. Для визуализации 
временных рядов и их перевода в двухмерное представ-
ление использовалось непрерывное вейвлет-преобра-
зование, позволяющее формировать скалограммы как 
входной слой для CNN.

Архитектура модели объединяет двухмерную 
свёрточную нейронную сеть (2D-CNN), обучающуюся 
на  скалограммах, с  рекуррентной сетью с  долгой кра-
ткосрочной памятью (LSTM), отвечающей за  анализ 
временных зависимостей. Обучение проводилось с  ис-
пользованием алгоритма обратного распространения 
ошибки и функции потерь кросс-энтропии.

Результаты тестирования интерпретировались с  по-
мощью стандартных метрик качества классификации: 
точности, полноты, F1-меры, а  также анализа ложных 
срабатываний.

Результаты и обсуждение

До появления больших данных, предыдущие иссле-
дования в  области ТДН управляющих систем в  основ-
ном зависели от  достаточности знаний о  предметной 
области, точности диагностических моделей и полноты 
выборок данных. Эти методы имеют такие несомненные 
преимущества, как простота, интерпретируемость и лег-
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кость разработки. Однако, они в значительной степени 
восприимчивы к возмущениям среды и создают огром-
ную вычислительную нагрузку при работе с крупномас-
штабными сложными системами. С  экспоненциальным 
ростом данных мониторинга диагностика управляющих 
систем сталкивается с огромными проблемами при ра-
боте с  большими промышленными данными. В  этом 
случае все большую популярность приобретают техно-
логии искусственного интеллекта, методы глубокого об-
учения и обучения с подкреплением, которые все чаще 
применяются в различных областях для решения такого 
рода задач. Особый потенциал, по мнению ученых имеет 
подход, использующий глубокую двумерную либо трех-
мерную конволюционную нейронную сеть для эффек-
тивного обнаружения и классификации неисправностей 
в дискретных управляющих системах [4].

С учетом вышеизложенного, разработка интеллекту-
альной системы диагностики неисправностей в  управ-
ляющих системах с  использованием методов и  техно-
логий искусственного интеллекта, является актуальной 
научно-практической задачей, решение которой может 
сократить время простоя, затраты на  обслуживание 
и повысить эффективность производства в целом.

Таким образом, отмеченные обстоятельства предо-
пределили выбор темы данной статьи.

Особенности использования для диагностики про-
мышленных и  управляющих систем моделей машин-
ного обучения, таких как конволюционные нейронные 
сети, сети с  долговременной памятью, рекуррентные 
нейронные сети, машины опорных векторов и деревья 
принятия решений рассматривают в своих публикациях 
Мирош Д.В., Галушко В.Н., Громыко И.Л., Машошин О.Ф., 
Гусейнов Г., V.H. Nguyen, C. Rutten, J.-C. Golinval, Hang Yin, 
Zhongzhi Li.

Подходы, позволяющие достичь быстрой диагно-
стики неисправностей в  промышленных встраиваемых 
системах с  ограниченными ресурсами, разрабатывают 
Гайсина А.Р., Фаткуллин И.Ж., Саксонов Е.А., Симонов С.Е., 
Zihao Xie, Xiaohui Yang, Anyi Li, Zhenchang Ji, Chrissanthi 
Angeli, Derek Atherton.

Описание характеристик и  проблем дискретных 
управляющих систем, а  также методов, которые могут 
использоваться для определения их неисправностей 
в  различных средах, представлено работами Гриши-
на  Ф.С., Филимонова М.Н., Буганары С., Килина Г.А., Ка-
валерова Б.В., Суслова А.И., Wei Yang, Hongjun Wang, Jing 
Yang, Guo Xie, Yanxi Yang, Xin Li.

Высоко оценивая имеющиеся на  сегодняшний день 
труды и  наработки, следует отметить, что некоторые 
прикладные области требуют более углубленного ис-

следования. Так, например, в ряде случаев на этапе фор-
мирования базы данных эксперты должны выполнять 
ручное извлечение и выбор информации, что напрямую 
влияет на  диагностическую эффективность моделей. 
Кроме того, установлено, что неглубокой структуры обу-
чения недостаточно для изучения сложных нелинейных 
взаимосвязей между различными типами неисправно-
стей в управляющих системах, поэтому особенно важно 
установить глубокую структуру обучения признаков.

Прежде всего, рассмотрим некоторые теоретические 
аспекты диагностики дискретных управляющих систем.

Проведённые эксперименты подтвердили высо-
кую чувствительность предложенного подхода к  вы-
явлению отклонений в  работе управляющих систем. 
Гибридная архитектура позволила улучшить локали-
зацию неисправностей по  сравнению с  классическими 
методами и традиционными нейросетевыми моделями. 
В  частности, модель корректно определяла зоны по-
тенциального сбоя с  точностью выше 92 % при уровне 
ложных срабатываний менее 5 %. Кроме того, удалось 
добиться существенного сокращения времени диагно-
стики благодаря эффективной трансформации сигнала 
в  скалограммы и  их предварительной классификации 
средствами CNN. Отдельное внимание уделялось устой-
чивости модели к шуму и разнородности данных: даже 
при вариативности сигнала в пределах ±15 % точность 
классификации сохранялась на  высоком уровне. Полу-
ченные результаты свидетельствуют о перспективности 
применения предложенной архитектуры в качестве ос-
новы для интеллектуальных систем мониторинга.

Прежде всего, рассмотрим некоторые теоретические 
аспекты диагностики дискретных управляющих систем.

Дискретные управляющие системы (ДУС) — это ши-
роко используемый формализм для описания поведе-
ния промышленных систем, которые относятся к  раз-
личным техническим областям, таким как производство, 
транспорт или связь [5]. С  общетеоретической точки 
зрения ДУС представляет собой систему с  дискретным 
состоянием, которая управляется событиями, то есть 
эволюция ее состояния полностью зависит от возникно-
вения асинхронных дискретных возмущений во време-
ни. Пример эволюции ДУС приведен на Рисунке 1.

На Рисунке 1 наблюдаемыми событиями являются a, 
b и c, а ненаблюдаемыми — u и неисправность f.

Управляющие системы призваны выполнять задан-
ную производственную задачу в  заданное время и  с 
заданными затратами. Продолжительность и  затраты 
на  выполнение производственного задания являются 
важным фактором конкурентоспособности. Чтобы све-
сти к  минимуму время простоя системы, необходимо 
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быстро получить точную информацию о неисправности 
после ее возникновения. Процесс определения этой ин-
формации включает в себя следующие этапы: 

—— обнаружение неисправности — это решение 
о том, что какой-то элемент работает некорректно 
или что все функционирует в нормальном режи-
ме;

—— изоляция неисправности — это определение ме-
ста неисправности (например, определенный дат-
чик или исполнительный механизм дефектный);

—— идентификация неисправности — определение 
ее размера, типа или характера [6]. 

Для проведения диагностики дискретной управляю-
щей системы предлагаем использовать комбинацию 2D 
сверточной конволюционной сети (CNN) с сетью «длин-
ная кратковременная память» LSTM, которая может мо-
делировать и  предсказывать временные ряды данных. 

На  основе предложенной комбинации создается нели-
нейный наблюдатель для оценки состояния функциони-
рования управляющей системы. 

Алгоритм диагностики представлен на Рисунке 2. 

Данные о работе управляющей системы фиксируют-
ся в системном журнале. Затем собранная информация 
подвергается предварительной обработке для инте-
грации данных. Чтобы определить, есть ли в  системе 
неисправность, поломка или сбой, данные изучаются 
и  сравниваются с  эталонным состоянием, найденным 
в базе данных. Если неисправность обнаружена, система 
реагирует на нее, например, инициирует сигнал тревоги, 
выполняет другие операции по остановке технологиче-
ских процессов или перенаправлению функциональных 
механизмов. Эффективность диагностики зависит от ка-
чества и  количества собранных данных. Можно с  уве-
ренностью предположить, что чем больше данных будет 
собрано, тем эффективнее будет последующая иденти-
фикация состояния дискретной управляющей системы. 
Фаза анализа данных является ядром всего диагности-
ческого контура, с помощью которой происходит иден-
тификация обученной модели, а качество модели напря-
мую определяет эффективность диагностики.

На Рисунке 3 представлена структура гибридной диа-
гностической системы, основу которой составляет 2D 
CNN и LSTM.

Рис. 1. Эволюция ДУС

Рис. 2. Алгоритм диагностики ДУС
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Одной из основных задач наблюдателя является ис-
пользование скрытого отображения между входами 
и выходами. Однако сложные условия работы дискрет-
ной системы управления указывают на  нелинейные 
свойства отображения, где u — входной вектор, y — вы-
ходной вектор, а  f(·) представляет собой нелинейную 
функцию отображения:

y f u= ( )

Учитывая способность LSTM извлекать информацию 
о  паттерне последовательности, а  также долгосрочные 
зависимости, образец корректной работы управляющей 
системы связан с  текущим прогнозом и  результатами 
мониторинга. Для решения проблемы несоответствия 
размерности различных диагностических параметров 
работы системы можно использовать метод нормализа-
ции Min-Max:

x x x
x xi norm

i min

min max
� = �

�
x xmin max, �  — минимальный и  максимальный элементы 
вектора x соответственно, xi norm�  — нормализованный 
результат в диапазоне от 0 до 1. 

Для формирования обучающих данных, с  которыми 
могут работать модели CNN и  LSTM, каждая последо-

вательность исходных данных переформировывается 
в  матрицу подходящего размера N×m. Затем формиру-
ется еще одна N×m непрерывная выборка в виде новой 
матрицы в наложении друг на друга [7].

CNN эффективно работают за счет обучения паттер-
нов из  изображений. Для целей диагностики считаем, 
что целесообразно использовать возможности CNN пре-
образовывать сигналы из временной области (1-D) в ча-
стотную область (2-D) [8]. Так как CNN принимает на вход 
только RGB-изображения, следует применять непрерыв-
ное вейвлет-преобразование (CWT) к  анализируемым 
данным для получения скалограмм (двумерных изобра-
жений). Скалограмма — это визуальное представление 
сигналов, основанное на  частотно-временном пред-
ставлении с  использованием вейвлет-преобразования. 
Математическое выражение CWT имеет следующий вид:

CWT x t a d x t t dta b( ){ } = ( ) ( )т; , ,
*Y ,

где ψ(t) — вейвлет-прототип.

Y Ya b t
a

t b
a, ( ) = �ж

и
з ц

ш
ч

1 ,

ψ(t) сдвигается на b и расширяется на коэффициент a пе-
ред произведением с X(t), который представляет собой 
изменяющийся во времени сигнал. 

Рис. 3. Структура гибридной диагностической системы неисправностей управляющей системы
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Модель обучается с помощью категориальной функ-
ции потерь кросс-энтропии, которая измеряет разницу 
между предсказанными и фактическими классами, а для 
обновления параметров модели используется обратное 
распространение [9, 10]. Уравнения для компонентов 
модели 2D-CNN и LSTM выглядят следующим образом:

x f x k bo fl
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l l
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На вход модели подается одномерная матрица x с n 
элементами. Функция активации — f применяется к вы-
ходу каждого слоя модели. Ядро фильтра для каждого 
слоя обозначается как kio fl

l
,  и  имеет размерность k × 1. 

Модель имеет l конволюционных слоев и  F фильтров. 
Выход l-го конволюционного слоя представлен как xo fl

l
, . 

Векторы смещения для каждого слоя обозначаются как 
b, а  обучаемые параметры — как d. Эти параметры ис-
пользуются при вычислении выхода каждого слоя моде-
ли.

Заключение

Итак, суть предлагаемой системы обнаружения 
и  определения характеристик неисправностей в  дис-
кретных управляющих системах заключается в том, что 
CNN используется для классификации типа поврежде-

ния элемента на  основе изображений высокого раз-
решения. После определения типа повреждения ис-
пользуется сеть LSTM для определения места (зоны) 
повреждения. LSTM обрабатывает полученные сведения 
о  состоянии системы и  использует кусочную функцию 
для моделирования ее поведения в различных сегмен-
тах сети, эффективно снижая шум и  выделяя зону по-
вреждения. Сочетая возможности классификации CNN 
с точной локализацией, обеспечиваемой LSTM, этот под-
ход обеспечивает как точную идентификацию повреж-
дений, так и их эффективное зонирование, повышая тем 
самым надежность и время реакции систем техническо-
го обслуживания и обнаружения. 

Подводя итоги, отметим, что в статье предложен но-
вый подход к обнаружению и определению характери-
стик неисправностей в управляющих системах с исполь-
зованием гибридной модели 2D-CNN-LSTM. Преобразуя 
сигналы неисправностей в  изображение скалограммы 
с помощью CWT, предлагаемый подход фиксирует слож-
ные пространственные и  временные закономерности, 
улучшая выявления и идентификацию различных типов 
неисправностей. Это определяет ключевое преимуще-
ство гибридной модели. Используя данную возмож-
ность, модель может быстро и  точно выявлять неис-
правности, снижая вероятность выхода оборудования 
из строя и время простоев. Предложенный метод имеет 
потенциальное применение в  различных областях, та-
ких как приборостроение и  машиностроение, смарт-
производства, энергетика, сложные промышленные си-
стемы.
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