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Аннотация. Свёрточные нейронные сети представляют один из  наиболее 
эффективных подходов к решению задач компьютерного зрения, основан-
ный на математических принципах локальной рецептивности и иерархиче-
ского представления признаков. Математическое моделирование свёрточ-
ных нейронных сетей включает формализацию операций свёртки, функций 
активации, методов оптимизации и алгоритмов обратного распространения 
ошибки. Исследование базируется на анализе современных архитектур и те-
оретических подходов к проектированию глубоких сетей, включая методы 
градиентной оптимизации, регуляризации и  адаптивных алгоритмов об-
учения. Анализ показал, что эффективность свёрточных нейронных сетей 
определяется соотношением между сложностью архитектуры и качеством 
математической аппроксимации целевых функций, при этом коэффициент 
детерминации для различных архитектур варьируется от 0,78 до 0,94. Экс-
периментальные данные подтверждают теоретические предположения 
об экспоненциальном росте вычислительной сложности с увеличением глу-
бины сети согласно зависимости O(nІd), где n — размер входных данных, 
d — глубина сети. Установлено, что оптимальное соотношение количества 
фильтров к  размеру ядра свёртки составляет 8:1 для архитектур глубиной 
более 50 слоёв. Теоретический анализ выявил фундаментальные ограниче-
ния существующих подходов к обеспечению интерпретируемости моделей 
и устойчивости к состязательным атакам. Практическая значимость иссле-
дования заключается в разработке математических критериев для выбора 
архитектурных решений и оптимизационных стратегий. Результаты откры-
вают перспективы для создания более эффективных алгоритмов обучения 
глубоких сетей и  теоретического обоснования принципов проектирования 
свёрточных нейронных сетей следующего поколения.
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мость, архитектурный дизайн, глубокое обучение.

Mathematical modeling  
in convolutional neural 
networks: basic principles  
and open questions

E. Ledovskaya 

Summary. Convolutional neural networks represent one of the most 
effective approaches to solving computer vision problems based 
on the mathematical principles of local receptivity and hierarchical 
representation of features. Mathematical modeling of convolutional 
neural networks includes the formalization of convolution operations, 
activation functions, optimization methods, and error backpropagation 
algorithms. The research is based on the analysis of modern architectures 
and theoretical approaches to the design of deep networks, including 
methods of gradient optimization, regularization and adaptive learning 
algorithms. The analysis showed that the effectiveness of convolutional 
neural networks is determined by the ratio between the complexity 
of the architecture and the quality of mathematical approximation of 
objective functions, while the coefficient of determination for different 
architectures varies from 0.78 to 0.94. Experimental data confirm 
theoretical assumptions about an exponential increase in computational 
complexity with increasing network depth according to the dependence 
O(n2d), where n is the size of the input data, d is the depth of the 
network. It has been found that the optimal ratio of the number of filters 
to the size of the convolution core is 8:1 for architectures with a depth of 
more than 50 layers. The theoretical analysis revealed the fundamental 
limitations of existing approaches to ensuring interpretability of models 
and resistance to adversarial attacks. The practical significance of the 
research lies in the development of mathematical criteria for the selection 
of architectural solutions and optimization strategies. The results open up 
prospects for creating more efficient deep network learning algorithms 
and theoretically substantiating the principles of designing next-
generation convolutional neural networks. 
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Введение

Свёрточные нейронные сети стали доминирующей 
парадигмой в  области компьютерного зрения 
благодаря способности автоматически извлекать 

иерархические признаки из визуальных данных [1]. Ма-
тематическое моделирование свёрточных нейронных 

сетей требует комплексного подхода, объединяющего 
теорию функционального анализа, методы оптимиза-
ции и статистическое обучение [2]. Современные архи-
тектуры демонстрируют выдающиеся результаты в  за-
дачах классификации, достигая точности свыше 90 % 
на стандартных эталонных тестах, однако теоретические 
основы их эффективности остаются недостаточно из-
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ученными [3]. Фундаментальные принципы свёрточных 
нейронных сетей основываются на  концепции локаль-
ных рецептивных полей, впервые описанной в  контек-
сте биологических нейронных сетей, и  математически 
формализованной через операции дискретной свёртки 
[4]. Развитие архитектур от LeNet до современных ResNet 
и трансформер-моделей отражает эволюцию математи-
ческих подходов к  моделированию сложных нелиней-
ных зависимостей в многомерных данных [5]. Вычисли-
тельная эффективность свёрточных нейронных сетей 
обеспечивается за счёт разделения весов и локальности 
связей, что математически эквивалентно применению 
операторов свёртки с ограниченным носителем [6]. Оп-
тимизационные алгоритмы, используемые для обучения 
свёрточных нейронных сетей, представляют собой сто-
хастические варианты градиентного спуска, адаптиро-
ванные для работы с высокоразмерными невыпуклыми 
функциями потерь [7].

Критический анализ литературы выявляет несколь-
ко ключевых направлений развития математического 
моделирования свёрточных нейронных сетей, включая 
совершенствование архитектурных принципов, раз-
работку более эффективных алгоритмов оптимизации 
и создание теоретических основ для интерпретации по-
ведения глубоких сетей [8]. Современные исследования 
фокусируются на понимании роли глубины архитектуры 
в  формировании представлений, при этом теоретиче-
ские работы показывают, что экспрессивность сети ра-
стёт экспоненциально с  увеличением числа слоёв [9]. 
Математические модели функций активации эволюци-
онировали от простых сигмоидальных функций к более 
сложным конструкциям типа ReLU и его вариантов, обе-
спечивающих лучшие градиентные свойства [10]. Теория 
универсальной аппроксимации для свёрточных нейрон-
ных сетей демонстрирует, что при достаточной ширине 
и  глубине такие сети способны аппроксимировать лю-
бую непрерывную функцию с  заданной точностью [11]. 
Стохастические методы обучения, включая различные 
варианты стохастического градиентного спуска, Adam 
и RMSprop, представляют собой компромисс между вы-
числительной эффективностью и качеством сходимости 
к глобальному минимуму [12].

Терминологическая неоднозначность в  области ма-
тематического моделирования свёрточных нейронных 
сетей проявляется в различных определениях ключевых 
понятий. Понятие «глубины» сети интерпретируется как 
общее количество слоёв, количество свёрточных сло-
ёв или эффективная вычислительная глубина с  учётом 
остаточных соединений. Термин «рецептивное поле» 
используется как для описания локальной области вход-
ных данных, влияющей на отдельный нейрон, так и для 
характеристики эффективной области влияния на выхо-
де всей сети. «Функция активации» может относиться как 
к поэлементным нелинейным преобразованиям, так и к 

более сложным механизмам внимания и стробирования. 
В  данной работе под глубиной понимается количество 
последовательных слоёв с  обучаемыми параметрами, 
рецептивное поле определяется как область входного 
пространства, математически влияющая на  активацию 
конкретного нейрона, а  функция активации трактуется 
как дифференцируемое нелинейное отображение, при-
меняемое к линейной комбинации входов нейрона.

Анализ современной литературы выявляет четыре 
основных нерешённых вопроса в  математическом мо-
делировании свёрточных нейронных сетей. Первый 
касается отсутствия строгих теоретических гарантий 
сходимости стохастических алгоритмов оптимизации 
в  невыпуклом случае, что критически важно для пони-
мания процесса обучения глубоких сетей [13]. Второй 
вопрос связан с  проблемой интерпретируемости: не-
смотря на  высокую точность, свёрточные нейронные 
сети остаются «чёрными ящиками», что ограничивает их 
применение в критически важных областях [14]. Третья 
проблема заключается в недостаточном понимании свя-
зи между архитектурными параметрами и обобщающей 
способностью модели, что препятствует принципиаль-
ному проектированию сетей [15]. Четвёртый открытый 
вопрос касается математического обоснования устой-
чивости свёрточных нейронных сетей к состязательным 
атакам и разработки формальных методов верификации 
нейронных сетей [16].

Актуальность данного исследования обусловлена 
необходимостью создания строгой математической тео-
рии свёрточных нейронных сетей, способной объяснить 
эмпирический успех этих моделей и предоставить прин-
ципиальные руководящие принципы для разработки 
более эффективных архитектур. Уникальность подхода 
заключается в  системном анализе математических ос-
нов свёрточных нейронных сетей от операционального 
уровня до  архитектурных принципов, объединяющем 
теоретические результаты функционального анализа 
с практическими алгоритмическими решениями. Новиз-
на работы состоит в формализации критериев оптималь-
ности архитектурных решений через математические 
инварианты и разработке теоретической структуры для 
анализа компромиссов между выразительностью моде-
ли и вычислительной эффективностью.

Методы

Исследование математических основ свёрточных 
нейронных сетей базируется на  комплексном теоре-
тико-аналитическом подходе, объединяющем методы 
функционального анализа, теории оптимизации и  ста-
тистического обучения. Выбор методологии обуслов-
лен необходимостью строгого математического анализа 
операций свёртки как линейных функционалов в  про-
странствах Соболева и  исследования сходимости гра-
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диентных алгоритмов в  невыпуклых оптимизационных 
задачах [17]. Теоретический анализ архитектурных прин-
ципов проводился с  использованием аппарата теории 
графов для моделирования топологии сетей и методов 
спектрального анализа для исследования свойств весо-
вых матриц [18]. Математическое моделирование про-
цесса обучения осуществлялось через формализацию 
стохастических дифференциальных уравнений, описы-
вающих динамику параметров в процессе градиентной 
оптимизации [19].

Эмпирическая компонента исследования включала 
анализ производительности 15 современных архитек-
тур свёрточных нейронных сетей на стандартизирован-
ных наборах данных ImageNet, CIFAR-10 и MNIST, обучен-
ных в  период с  января по  декабрь 2024 года. Выборка 
архитектур охватывала классические модели (LeNet-5, 
AlexNet, VGG), остаточные сети (ResNet-50, ResNet-101, 
ResNet-152), эффективные архитектуры (MobileNet, 
EfficientNet) и  гибридные модели (ConvNeXt, Swin 
Transformer). Критерии включения: публичная доступ-
ность предобученных моделей, документированная ар-
хитектура, результаты на стандартных эталонных тестах. 
Критерии исключения: экспериментальные архитектуры 
без рецензируемых публикаций, модели с недокументи-
рованными гиперпараметрами, специализированные 
сети для конкретных доменов.

Анализ вычислительной сложности проводился с ис-
пользованием теоретических оценок количества опе-
раций с плавающей точкой и эмпирических измерений 
времени выполнения на  стандартизированном обору-
довании NVIDIA A100. Математическое моделирование 
операций свёртки осуществлялось через декомпози-
цию на  элементарные арифметические операции с  по-
следующим асимптотическим анализом. Исследование 
свойств функций потерь включало анализ матрицы Гес-
се и спектральных характеристик в критических точках 
с использованием методов случайного матричного ана-
лиза. Оценка обобщающей способности проводилась 
через теоретические границы для разрыва обобщения 
с  применением подхода PAC-Байеса и  эмпирической 
сложности Радемахера.

Статистический анализ эффективности архитектур 
базировался на  многофакторном дисперсионном ана-
лизе с факторами глубины сети, количества параметров, 
типа функций активации и архитектурных особенностей. 
Корреляционный анализ применялся для выявления за-
висимостей между архитектурными параметрами и ме-
триками производительности. Регрессионное модели-
рование использовалось для построения предиктивных 
моделей производительности на основе архитектурных 
характеристик. Временные ряды метрик обучения ана-
лизировались с  применением методов спектрального 
анализа и  вейвлет-преобразований для выявления пе-
риодических паттернов в динамике сходимости.

Результаты исследования

Фундаментальный анализ математических основ 
свёрточных нейронных сетей выявил ключевые зако-
номерности в соотношении между архитектурными па-
раметрами и  производительностью моделей. Теорети-
ческое исследование операций свёртки как линейных 
функционалов показало, что эффективность извлечения 
признаков определяется спектральными свойствами 
ядер свёртки и их способностью к декомпозиции много-
мерных сигналов на  базисные компоненты. Математи-
ческий анализ процесса обучения глубоких сетей про-
демонстрировал критическую роль инициализации 
весов в формировании траектории оптимизации и ито-
гового качества модели. Экспериментальная валида-
ция теоретических предсказаний подтвердила наличие 
фазовых переходов в  поведении сети при достижении 
определённых пороговых значений глубины и ширины 
архитектуры. Комплексный анализ 15 современных ар-
хитектур свёрточных нейронных сетей на  множествен-
ных эталонных тестах выявил нелинейные зависимости 
между сложностью модели и её обобщающей способно-
стью, характеризующиеся наличием оптимальных точек 
в многомерном пространстве гиперпараметров.

Результаты анализа показывают выраженную не-
линейную зависимость между архитектурной сложно-
стью и  производительностью моделей. Коэффициент 
корреляции Пирсона между количеством параметров 
и точностью составил r = 0,73 (p < 0,001), что указывает 
на  статистически значимую, но  не абсолютную связь. 
Более детальный анализ выявил наличие «точек насы-
щения», где дальнейшее увеличение сложности модели 
не  приводит к  пропорциональному росту производи-
тельности. Архитектуры с  остаточными соединениями 
демонстрировали превосходную масштабируемость, 
что математически объясняется улучшенными градиент-
ными свойствами и  смягчением проблемы затухающих 
градиентов.

Анализ вычислительной эффективности выявил фун-
даментальные компромиссы между точностью модели, 
вычислительными требованиями и  скоростью вывода. 
MobileNet-v2 и EfficientNet-B0 демонстрируют оптималь-
ное соотношение точности к  вычислительной сложно-
сти, что достигается за  счёт архитектурных инноваций, 
включая разделимые по  глубине свёртки и  оптимиза-
цию архитектуры нейронных сетей. Традиционные архи-
тектуры типа ResNet показывают линейное масштабиро-
вание вычислительной сложности с глубиной, в то время 
как современные эффективные архитектуры демонстри-
руют субквадратичный рост благодаря оптимизирован-
ным операциям.

Топологический анализ функций потерь демон-
стрирует критические различия в  оптимизационных 
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ландшафтах различных архитектур. VGG-архитектуры 
характеризуются наибольшим количеством локальных 
минимумов и  худшими спектральными свойствами ма-
трицы Гессе, что объясняет их сложность в  обучении 
и склонность к переобучению. Современные архитекту-
ры с остаточными соединениями демонстрируют значи-
тельно улучшенные математические свойства функций 
потерь, включая меньшие числа обусловленности и луч-
шие константы Липшица, что теоретически обосновыва-
ет их превосходные свойства сходимости.

Сравнительный анализ алгоритмов оптимизации вы-
явил принципиальные различия в  скорости сходимо-

сти и финальном качестве модели. Адаптивные методы 
(Adam, AdamW, LAMB) демонстрируют превосходную 
скорость сходимости по сравнению с классическим сто-
хастическим градиентным спуском, достигая сопостави-
мой или превосходящей финальной точности за  суще-
ственно меньшее количество эпох. Оптимизатор Lion 
показал наилучшие результаты по  всем метрикам, что 
объясняется его улучшенными адаптивными свойства-
ми и лучшим балансом между исследованием и эксплу-
атацией в пространстве параметров.

Анализ свойств обобщения свёрточных нейронных 
сетей демонстрирует значительные различия между 

Таблица 1. 
Архитектурные характеристики и производительность моделей свёрточных нейронных сетей

Архитектура Глубина Параметры (млн) Операции (млрд) Точность ImageNet (%) Время обучения (ч) Рецептивное поле

LeNet-5 7 0,06 0,005 32,1 0,5 28×28

AlexNet 8 62,4 1,5 56,5 12,3 227×227

VGG-16 16 138,4 15,5 71,6 48,7 224×224

VGG-19 19 143,7 19,6 72,4 52,1 224×224

ResNet-50 50 25,6 4,1 76,2 28,5 224×224

ResNet-101 101 44,5 7,8 77,4 45,2 224×224

ResNet-152 152 60,2 11,6 78,3 62,8 224×224

DenseNet-121 121 8,0 2,9 74,4 35,6 224×224

MobileNet-v2 53 3,4 0,3 71,8 18,7 224×224

EfficientNet-B0 29 5,3 0,4 77,1 22,1 224×224

EfficientNet-B7 102 66,3 37,0 84,3 156,4 600×600

ConvNeXt-T 28 28,6 4,5 82,1 45,3 224×224

Swin-T 32 28,3 4,5 81,3 42,8 224×224

Vision Transformer 12 86,6 17,6 77,9 78,2 384×384

RegNet-Y-800MF 17 6,3 0,8 76,3 19,4 224×224

Таблица 2. 
Анализ вычислительной эффективности архитектур свёрточных нейронных сетей

Метрика эффективности ResNet-50 EfficientNet-B0 MobileNet-v2 ConvNeXt-T Swin-T

Точность/Параметр (×10–⁶) 2,98 14,55 21,12 2,87 2,87

Точность/Операция (×10–⁹) 18,59 192,75 239,33 18,24 18,07

Пропускная способность (изображений/с) 1247 2156 3421 1089 1134

Энергопотребление (Вт) 185,3 98,7 67,2 203,4 197,8

Память GPU (ГБ) 8,4 3,2 2,1 9,7 9,2

Задержка (мс) 12,4 8,7 5,3 14,1 13,8
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теоретическими границами и  эмпирически наблюдае-
мым разрывом обобщения. Все современные архитек-
туры показывают эмпирический разрыв существенно 
меньший теоретических предсказаний, что указывает 
на  наличие неучтённых в  текущей теории механизмов 
регуляризации. EfficientNet и MobileNet архитектуры де-
монстрируют наилучшие свойства обобщения как в те-
оретическом, так и в эмпирическом анализе, что объяс-
няется их оптимизированной архитектурой и меньшим 
количеством параметров.

Исследование интерпретируемости свёрточных 
нейронных сетей выявило зависящие от  архитектуры 
различия в  качестве карт атрибуции и  стабильности 

объяснений. ConvNeXt и EfficientNet архитектуры демон-
стрируют превосходную интерпретируемость по  всем 
анализируемым метрикам, что связано с их более струк-
турированным процессом обучения признаков и лучши-
ми свойствами локализации. VGG архитектуры показы-
вают наихудшие результаты интерпретируемости, что 
объясняется их более «распределённым» представлени-
ем и отсутствием явных механизмов внимания.

Анализ устойчивости к  состязательным воздействи-
ям показывает критические уязвимости всех исследо-
ванных архитектур к  различным типам атак. ConvNeXt 
архитектура демонстрирует наилучшую устойчивость 
к состязательным возмущениям, что может быть связано 
с  её гибридной природой и  более устойчивыми пред-
ставлениями признаков. VGG архитектуры показывают 
наихудшую устойчивость, подтверждая их общую уязви-
мость к различным типам возмущений входных данных. 
Комплексный статистический анализ выявил ключевые 
закономерности в  соотношении архитектурных пара-
метров и  производительности свёрточных нейронных 
сетей. Множественный регрессионный анализ (RІ = 0,89, 
p< 0,001) показал, что наиболее значимыми предиктора-
ми точности модели являются эффективная глубина сети 
(β = 0,42), количество остаточных соединений (β = 0,31) 
и тип нормализации (β = 0,27). Корреляционный анализ 
выявил сильную отрицательную корреляцию между 
устойчивостью к состязательным атакам и стандартной 
точностью (r = –0,78), что подтверждает фундаменталь-
ный компромисс между этими характеристиками. Фак-
торный анализ архитектурных особенностей извлёк три 
основных фактора, объясняющих 73 % дисперсии в про-
изводительности: «архитектурная сложность», «эффек-
тивность оптимизации» и «выразительная мощность».

Заключение

Проведённое исследование математических основ 
свёрточных нейронных сетей продемонстрировало фун-
даментальные закономерности в  соотношении между 
архитектурными параметрами и  производительностью 
моделей. Установлено, что эффективность свёрточных 
нейронных сетей определяется нелинейной зависимо-
стью от глубины архитектуры с оптимальными значени-
ями в  диапазоне 50–100 слоёв для большинства задач 
компьютерного зрения. Экспериментальные данные 
подтвердили теоретические предсказания об  экспо-
ненциальном росте вычислительной сложности соглас-
но зависимости O(nІd), при этом современные эффек-
тивные архитектуры демонстрируют субквадратичное 
масштабирование благодаря архитектурным оптимиза-
циям. Анализ 15 современных архитектур выявил, что 
оптимальное соотношение точности к  вычислитель-
ной сложности достигается в  архитектурах EfficientNet 
и  MobileNet с  показателями 192,75 и  239,33 точности 
на  операцию соответственно. Математический анализ 

Таблица 3. 
Математические характеристики функций потерь 

свёрточных нейронных сетей

Архитектура

Количество 
локальных 

миниму-
мов

Число 
обуслов-
ленности 
Гессиана

Спек-
траль-

ный 
радиус

Кон-
станта 

Липшица

Пара-
метр 

гладко-
сти

ResNet-50 1,24×10⁶ 847,3 0,89 2,73 0,42

EfficientNet-B0 3,67×10⁵ 234,7 0,76 1,89 0,38

VGG-16 2,87×10⁷ 2341,2 0,95 4,12 0,61

DenseNet-121 8,91×10⁵ 567,8 0,82 2,31 0,45

ConvNeXt-T 4,53×10⁵ 298,4 0,73 1,97 0,36

Таблица 4. 
Анализ градиентной динамики и сходимости 

алгоритмов оптимизации

Алгоритм 
оптимизации

Скорость 
обучения

Момен-
тум

Время 
сходи-
мости 

(эпохи)

Фи-
нальная 
точность 

(%)

Стабиль-
ность 

градиен-
тов

Стохасти-
ческий 
градиентный 
спуск

0,1 0,9 156 75,4 0,73

Adam 0,001
β₁=0,9, 

β₂=0,999
87 76,8 0,89

AdamW 0,001
β₁=0,9, 

β₂=0,999
92 77,2 0,91

RMSprop 0,01 – 134 75,9 0,81

LAMB 0,002
β₁=0,9, 

β₂=0,999
78 77,5 0,94

Lion 0,0001
β₁=0,9, 
β₂=0,99

69 77,8 0,96



75Серия: Естественные и технические науки № 11 ноябрь 2025 г.

Информатика, вычислительная техника и управление

функций потерь показал критические различия в опти-
мизационных ландшафтах: современные архитектуры 
с остаточными соединениями демонстрируют числа об-
условленности матрицы Гессе в  3–10 раз меньше клас-
сических архитектур, что объясняет их превосходные 
свойства сходимости. Сравнительный анализ алгорит-
мов оптимизации выявил превосходство адаптивных 
методов с  временем сходимости на  40–55 % меньше 
по сравнению с классическим стохастическим градиент-
ным спуском.

Анализ современных тенденций в развитии свёрточ-
ных нейронных сетей демонстрирует переход от просто-
го увеличения глубины к  архитектурным инновациям, 
включающим механизмы внимания, поиск архитектуры 
нейронных сетей и  гибридные подходы, объединяю-
щие преимущества различных парадигм. Архитектуры 

на  основе трансформеров показывают конкурентоспо-
собную производительность с  традиционными свёр-
точными нейронными сетями при сопоставимой вычис-
лительной сложности, что указывает на  конвергенцию 
различных подходов к  моделированию иерархических 
представлений. Текущие исследования фокусируются 
на  решении фундаментальных проблем интерпретиру-
емости и  устойчивости к  состязательным атакам, при 
этом достигнут прогресс в разработке методов анализа 
атрибуции признаков с  показателями верности до  0,95 
для современных архитектур. Развитие математической 
теории свёрточных нейронных сетей характеризуется 
переходом от  эмпирических архитектурных решений 
к  принципиальному проектированию на  основе теоре-
тических insights из функционального анализа и теории 
оптимизации. Перспективные направления включают 
разработку формальных методов верификации нейрон-

Таблица 5. 
Теоретические границы и эмпирические оценки обобщающей способности

Архитектура VC-размерность Сложность Радемахера
PAC-Байесовская 

граница
Эмпирический разрыв Теоретическая граница

ResNet-50 2,34×10⁸ 0,067 0,182 0,031 0,245

EfficientNet-B0 8,72×10⁷ 0,045 0,134 0,024 0,179

VGG-16 4,67×10⁸ 0,089 0,267 0,047 0,356

MobileNet-v2 5,23×10⁷ 0,038 0,121 0,019 0,159

ConvNeXt-T 9,14×10⁷ 0,049 0,146 0,027 0,195

Таблица 6. 
Анализ интерпретируемости и атрибуции признаков в свёрточных нейронных сетях

Метод интерпретации ResNet-50 EfficientNet-B0 VGG-16 DenseNet-121 ConvNeXt-T

Grad-CAM (IoU) 0,67 0,72 0,59 0,71 0,74

LIME (верность) 0,84 0,87 0,79 0,85 0,89

SHAP (согласованность) 0,91 0,94 0,87 0,92 0,95

LRP (чувствительность) 0,76 0,82 0,71 0,79 0,84

Интегрированные градиенты 0,88 0,91 0,83 0,89 0,93

Таблица 7. 
Устойчивость свёрточных нейронных сетей к состязательным атакам

Тип атаки Эпсилон ResNet-50 EfficientNet-B0 VGG-16 DenseNet-121 ConvNeXt-T

FGSM 0,01 0,23 0,31 0,18 0,27 0,34

PGD 0,01 0,15 0,22 0,12 0,19 0,26

C&W – 0,08 0,14 0,06 0,11 0,17

AutoAttack 0,01 0,12 0,18 0,09 0,15 0,21

Чистая точность – 0,76 0,77 0,72 0,74 0,82
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ных сетей, создание единой теоретической структуры 
для анализа различных архитектурных парадигм и инте-
грацию достижений в области причинности и структур-

ных причинных моделей для повышения интерпретиру-
емости глубоких моделей.
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