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Аннотация. В  статье рассматривается разработка и  экспериментальная 
проверка методов ресурсо- и  энергоэффективной дистилляции транс-
формерных моделей в  задаче извлечения именованных сущностей (NER) 
с  акцентом на  сохранении верифицируемых и  практически важных зна-
ний. Предложенный подход сочетает инженерные приемы дистилляции, 
целевую оценку по  критическим классам сущностей и  систематизирован-
ную оценку ресурсных характеристик моделей. Работа ориентирована 
на  практическую воспроизводимость: все экспериментальные протоколы 
формализованы и  реализованы в  виде воспроизводимого программного 
пайплайна.

Ключевые слова: дистилляция знаний, трансформеры, извлечение имено-
ванных сущностей (NER), ресурсоэффективность, критические факты, вери-
фицируемые знания.

Введение

Современные трансформерные модели обеспе-
чивают высокую точность в  задачах извлечения 
информации из  текста, включая распознавание 

именованных сущностей [1, 2], однако их высокая пара-
метрическая сложность и  вычислительные требования 
ограничивают использование в  ресурсно-ограничен-
ных и  чувствительных приложениях (edge-устройства, 
корпоративные локальные деплойменты в  медицине, 
финансах и госсекторе) [3, 4]. Наряду с сокращением вы-
числительной нагрузки появляется требование к гаран-
тированной сохранности практически важных фактов — 
отдельных типов сущностей и  спанов, от  корректности 
распознавания которых зависит принятие решений и воз-
можность аудита [5, 6]. Современные практики дистил-
ляции позволяют уменьшать модели, но обычно оптими-
зируют глобальные метрики и не дают прямых гарантий 
по «критическим» знаниям. Вместе с тем оценка эконо-
мии ресурсов часто ограничивается измерениями чис-
ла параметров без системного учета влияния на latency 
и  применимых прокси-метрик энергопотребления [7].

На основе результатов анализа потребностей практи-
ческих систем и существующих пробелов в научных ис-
точниках литературы сформулированы три конкретные 
исследовательские задачи, которые решаются в рамках 
работы и  демонстрируются в  воспроизводимом про-
граммном пайплайне:

1.	 Произвести сравнительную оценку качества рас-
познавания сущностей при переходе от «teacher» 
к «student» моделям [8];

2.	 Измерить и  описать изменение числа параме-
тров и  latency (воспроизводимая методика за-
меров), предложить простые proxy-метрики 
для приближенной оценки энергопотребления 
и  проанализировать соотношение «качество — 
ресурсы» [9];

3.	 Выделить множество критических типов сущ-
ностей, разработать процедурную методику вы-
числения F1_critical и Coverage путем BIO k span 
преобразований и  точного совпадения спанов, 
оценить влияние дистилляции на  эти метри- 
ки [10].
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Сравнительная оценка качества  
распознавания сущностей при переходе 

от «teacher» к «student» моделям

Задача: количественно и  качественно оценить, как 
ресурсоэффективная дистилляция влияет на  извлече-
ние именованных сущностей и на сохранение практиче-
ски значимых спанов. Для этого реализован воспроизво-
димый экспериментальный конвейер, обеспечивающий 
корректное преобразование меток, сопоставимость 
условий обучения и  строгую процедуру вычисления 
entity-level метрик.

Подготовка данных и согласование меток была нача-
та с выбора исходного корпуса — CoNLL-2003. Токениза-
ция выполнена с учетом subword-токенов (is_split_into_
words=True), а субтокены, не являющиеся началом слова, 
помечались —100 в массиве labels, чтобы исключить их 
из расчёта loss. Критически важна корректная интерпре-
тация id → label: mapping извлекается пнепосредствен-
но из  «сырых» данных CoNLL и  используется как един-
ственный источник правды для перевода id в BIO-строки 
при оценке предсказаний и  эталона. Это устраняет не-
скоординированность форматов, приводившую ранее 
к пустым множествам спанов.

Модели и конфигурация экспериментов:
—— Teacher: BERT-подобная архитектура;
—— student: DistilBERT.

Обе модели подготавливались к  единой стратегии 
токенизации, паддинга и обработки субтокенов. В целях 
воспроизводимости фиксировались seed RNG и версии 
ключевых библиотек.

Гиперпараметры (демонстрационные значения):
learning rate = 5e-5;
batch_size = 16;
epochs = 1–2.
Параметры дистилляции:
alpha = 0,5;
beta = 0,5;
temperature = 2,0.

В экспериментальном пайплайне реализованы два 
практических режима получения student из teacher. Оба 
режима ориентированы на то, чтобы студент «научился» 
важным для задачи распознавания закономерностям, 
но отличаются тем, какие сигналы учитель передает и ка-
кие аспекты при этом подчеркиваются.

Vanilla distillation (базовая дистилляция) — в  таком 
режиме обучение студента происходит под контро-
лем двух источников: стандартной «целевой» функции 
(ошибка по  известным меткам на  тренировочных при-
мерах) и согласования с предсказаниями учителя. Идея 

простая: студент не  только пытается правильно пред-
сказать истинные метки, но и стремится воспроизвести 
«мягкие» вероятностные предпочтения учителя (напри-
мер, относительную уверенность в различных классах), 
что передаёт дополнительные структурные знания учи-
теля. В  практической реализации это достигается ком-
бинированием обычного кросс-энтропийного сигнала 
и меры расхождения между вероятностными распреде-
лениями учителя и студента по токенам.

Constrained distillation (ограниченная дистилляция 
с  приоритетом критических позиций) — этот режим 
расширяет базовую схему тем, что явно подчёркивает 
важность определённого подмножества меток или по-
зиций  — критических сущностей, заданных заранее 
по  прикладным соображениям (в  эксперименте — PER 
и  ORG). Практически это реализуется добавлением до-
полнительного сигнала обучения, который усиливает 
наказание за  расхождения именно на  токенах или спа-
нах, относящихся к  этим критическим типам. Другими 
словами, помимо стремления согласоваться с учителем 
в  целом, студент дополнительно «прицельно» учится 
на  позициях, где ошибка особенно нежелательна. Кон-
кретная форма такого прицельного сигнала может быть 
двух типов: (а) дополнительное согласование логитов 
учителя и студента только на токенах критических спа-
нов, или (б) увеличение веса ошибки (weighted loss) для 
классов, входящих в набор критических типов. Оба вари-
анта реализованы в  пайплайне и  могут переключаться 
параметром, управляющим вкладом этого сигнала.

Качество сравнивается на  уровне сущностных спа-
нов: из token-level BIO-меток строятся спаны вида (label, 
start, end), затем вычисляются точные совпадения между 
этими множествами для расчёта Precision, Recall и  F1. 
Для прикладного контроля дополнительно рассчиты-
вается F1_critical — F1, вычисляемая только по заранее 
выделенному множеству критических типов, а  также 
Coverage — доля истинных критических спанов, восста-
новленных моделью (exact-match по спанам). Все метри-
ки агрегируются и  сохраняются в  структурированном 
виде для последующего анализа.

Эксперимент выполнен в  следующем порядке: fine-
tune teacher → инициализация student и сохранение его 
исходного состояния → запуск vanilla distillation → серия 
constrained запусков с  различными настройками при-
цельного сигнала → оценка и сохранение метрик (CSV) 
→ генерация графиков и таблиц. Для корректного срав-
нения всех режимов студент перед каждым запуском 
восстанавливается из  одного и  того же сохраненного 
начального состояния, чтобы исключить эффект разной 
инициализации. Для измерения latency используется 
воспроизводимый протокол (2 warm-up прогона, N=5 
измерительных прогонов, фиксированный batch_size).



134 Серия: Естественные и технические науки № 11 ноябрь 2025 г.

Информатика, вычислительная техника и управление

В таблице 1 приведено соотношение качества и  ре-
сурсов рассматриваемых моделей:

Для каждой модели сравниваются одновременно 
параметры, скорость и  качество. Практическая зада-
ча — выбрать модель, которая обеспечивает приемле-
мое сочетание малых значений суммарного количества 
параметров и  среднюю латентность одного бача при 
достаточном уровне F1, рассчитанная по  всем типам 
сущностей и  гарантированного соотношения F1, рас-
считанная только по  множеству критических типов 
к  доле истинных критических спанов. Модель-teacher 
имеет 108898569 параметров и  демонстрирует латент-
ность 0,007802 при прочих равных условиях. Ее каче-
ство по  entity-level F1 составляет 0.908186. Переход 
к компактной модели-student_vanilla приводит к сокра-
щению числа параметров до 66369801 (≈39 % по сравне-
нию с teacher) и к уменьшению латентности до 0,004400, 
при этом overall F1 оказывается равным 0,911686, а  F1 
по критическим типам — 0,925079 (Coverage = 0.921807). 
Таким образом, в рассматриваемом эксперименте дости-
гается значимая экономия по ресурсам при удержании 
(и  в ряде случаев улучшении) качества распознавания: 
практический выбор модели будет зависеть от допусти-
мого уровня снижения F1, рассчитанная по всем типам 
сущностей и  требуемых гарантий по  соотношению F1, 
рассчитанная только по  множеству критических типов 
к доле истинных критических спанов. В случае, если за-
дача требует не  допускать падения точности по  крити-
ческим сущностям, предпочтителен constrained-режим 
с малым положительным значением параметра β, кото-
рый в экспериментах показал улучшение F1_critical при 
несущественном влиянии на F1_overall.

На рисунке 1 показано сравнение entity-level F1 для 
исследованных конфигураций (Teacher, Student vanilla).

На рисунке 2 показан F1 исключительно по критиче-
ским классам (PER, ORG), и отражена сохранность ключе-
вых фактов при дистилляции.

Оценка ресурсоэффективности  
и влияние на deploy

Оценка ресурсной эффективности проводится через 
два воспроизводимых proxy-показателя: суммарное чис-

ло параметров (Params) и средняя латентность инферен-
са (Latency). Params — детерминированный показатель, 
вычисляемый как сумма элементов всех параметров 
модели (количество скалярных значений). Latency из-
меряется по детерминированному и воспроизводимому 
протоколу: серия warm-up прогонов, затем N forward-
прогонов (в  эксперименте N=5) на  фиксированном 
batch_size, усреднение времени. Для надёжности прове-
дение повторных измерений (repeats) и  представление 
mean ± std обязательно.

Экспериментальная реализация обеспечивает стро-
гую фиксацию условий: одна и та же функция collate_fn 
используется для всех моделей, одинаковые значения 
batch_size и strategy padding. Аппаратная конфигурация 

Таблица 1. 
Соотношение качества и ресурсов моделей

Модель Число параметров
Средняя латентность 

одного бача
F1, рассчитанная по всем 

типам сущностей

F1, рассчитанная  
только по множеству  

критических типов

Доля истинных  
критических спанов

teacher 108898569 0,007802 0,908186 0,913884 0,905894

student_vanilla 66369801 0,004400 0,911686 0,925079 0,921807

Рис. 1. Overall F1 для исследованных моделей

Рис. 2. F1 по критическим типам (PER, ORG)
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тщательно фиксируется в versions.txt, чтобы обеспечить 
воспроизводимость абсолютных значений Latency.

Методика измерений обоснована тем, что Params 
и Latency являются простыми, воспроизводимыми и бы-
стрыми в получении proxy-метриками для инженерных 
решений о деплое. Для полноценной оценки энергопо-
требления в дальнейшем планируются прямые измере-
ния (RAPL/pyJoules), однако данные процедуры требуют 
аппаратного доступа и специализированных инструмен-
тов и потому отнесены к следующей фазе исследования.

Шаги реализации измерений:
—— Выполнить 2–5 warm-up прогонов по одному бат-
чу для прогрева вычислителя (GPU/CPU);

—— Пройти N forward-прогонов (N=5) и измерить вре-
мя каждого; Latency = mean(times);

—— При необходимости повторить измерение M раз 
(repeats) и вычислить mean ± std;

—— Сохранить результаты в CSV.

Сопоставление Params и  Latency позволяет оценить 
практическую выгоду от перехода к student. В наших экс-
периментах показано: сокращение числа параметров 
приблизительно на 39 % сопровождалось уменьшением 
latency примерно в  1,8 раза при сохранении высокого 
уровня качества распознавания.

На рисунке 3 проиллюстрирована зависимость сред-
ней латентности инференса от числа параметров (в мил-
лионах); каждая точка соответствует конкретной модели.

Рис. 3. Зависимость Latency (s) от числа параметров (M) 
для исследованных моделей

Контроль сохранения критических знаний  
и их верификация

Контроль сохранения критических сущностей орга-
низован через введение локализованного компонента 
потерь, обозначаемого как критический loss — он на-
правлен специально на  токены и  спаны заранее выде-
ленных типов K (в эксперименте K={PER,ORG}).

Для практической проверки сохранности таких фак-
тов используются две метрики:

—— F1 по критическим типам (F1_critical) — стандарт-
ная F1, вычисленная только по  спанам, относя-
щимся к K;

—— Coverage — доля истинных критических спанов, 
которых модель восстановила точно по границам.

—— Критический loss реализован двумя способами, 
которые доступны в коде и могут переключаться:

—— Локализованное согласование логитов. На  пози-
циях токенов, принадлежащих истинным крити-
ческим спанам, дополнительно минимизируется 
расхождение между «внутренними оценками» 
(логитами) учителя и студента. Идея: студент дол-
жен максимально воспроизводить поведение 
учителя именно там, где это важно.

—— Взвешенный стандартный loss. Для классов, вхо-
дящих в множество K, увеличиваются веса ошиб-
ки при расчете обычной кросс-энтропии, так что 
ошибки на критических токенах «дороже» и силь-
нее корректируются во время обучения.

Обе реализации дают практический «рычаг» управ-
ления: сила влияния критического loss задается един-
ственным параметром β — при β=0 дополнительного 
приоритета нет; при росте β вниманию к  критическим 
позициям придается все больше веса.

Для исследования влияния критического loss выпол-
нен перебор значений β (0,0; 0,1; 0,2; 0,5). Для каждого 
β студент восстанавливался из одного и того же началь-
ного состояния (для того, чтобы обеспечить корректное 
сравнение), обучался короткое количество эпох (1–2 
в  демонстрации; для репликаций — 2–5), и  затем оце-
нивался по  метрикам f1_overall, f1_critical и  coverage. 
Результаты каждого прогона представлены в таблице 2.

При умеренных значениях β (порядка 0,1–0,2) дости-
гается заметное улучшение F1_critical и  Coverage при 
минимальном воздействии на  общую F1. При  слишком 
большом β (например, 0,5) прицельный сигнал начинает 
доминировать, что может ухудшать общую сходимость 
и  снижать F1_overall. На  практике рекомендуется под-
бирать β через валидацию по  F1_critical, при высоких 
β снижать learning rate и  применять gradient clipping, 
а перед каждым прогоном сохранять и восстанавливать 
начальное состояние студента для честного сравнения.

На рисунке 4 представлена зависимость F1 overall 
и F1_critical от значения β.

Заключение

В работе реализован воспроизводимый и  система-
тизированный подход к  ресурсоэффективной дистил-
ляции трансформерных моделей в задаче NER с учетом 
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требований к  сохранению критических знаний. Экспе-
риментальная валидация на  CoNLL-2003 показывает, 
что при аккуратной настройке дистилляции возможно 
получить компактные модели с  существенно меньшим 
числом параметров и значительным ускорением инфе-
ренса при сохранении качества распознавания и  улуч-
шении показателей по критическим типам. Дальнейшие 
исследования будут направлены на прямые измерения 
энергопотребления, интеграцию извлечения формаль-
ных артефактов и изучение приватных протоколов агре-
гирования компактных знаний.
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Рис. 4. Зависимость F1 overall и F1_critical от значения β

Таблица 2. 
Результаты перебора различных значений β

β Время (с)
Полнота 

(Overall), %
Точность 

(Overall), %
F1 (Overall), %

Полнота 
(Critical), %

Точность 
(Critical), %

F1 (Critical), %
Покрытие 

(Coverage), %

0.0 0.0050 92.12 92.06 92.09 92.22 93.69 92.95 92.22

0.1 0.0047 92.15 91.87 92.01 93.16 93.00 93.08 93.16

0.2 0.0057 92.21 92.38 92.30 92.75 93.93 93.34 92.75

0.5 0.0050 91.99 92.54 92.26 92.75 93.69 93.22 92.75


