DOI 10.37882/2223-2966.2025.08.30

ЭПИДЕМИОЛОГИЧЕСКИЕ АСПЕКТЫ РАСПРОСТРАНЕННОСТИ ЭНДОКРИННЫХ ЗАБОЛЕВАНИЙ В УСЛОВИЯХ ИЗМЕНЯЮЩЕЙСЯ ЭКОЛОГИЧЕСКОЙ СРЕДЫ

EPIDEMIOLOGICAL ASPECTS OF THE PREVALENCE OF ENDOCRINE DISEASES UNDER CHANGING ENVIRONMENTAL CONDITIONS

E. Rukhlyadyeva

Summary. Endocrine diseases demonstrate a growing global prevalence, coinciding with unprecedented changes in the environmental context. In the present study, epidemiological trends of endocrine disorders were analyzed in the context of exposure to endocrine disruptors (ED) and other environmental factors. The work employed a comprehensive approach, including analysis of population databases from 15 countries over the period 2000–2024, a stratified sample of 47,845 participants, geosystem mapping of pollution, and biomonitoring of exposure. It was found that the prevalence of thyroid diseases increased by 37.8~%(95 % CI: 34.2-41.4), type II diabetes by 62.3 % (95 % CI: 58.9-65.7), and obesity by 89.4 % (95 % CI: 85.1–93.7) during the study period. A significant association was identified between blood concentrations of PFAS (quartile excess: OR = 2.34; 95 % CI: 2.08–2.63), urinary phthalates (OR = 1.78; 95 % Cl: 1.56-2.03), and the development of endocrine disorders. Attributable risk modeling showed that 23.7 % of precocious puberty cases, 18.4 % of autoimmune thyroiditis manifestations, and 31.2 % of metabolic dysfunctions may be related to ED exposure. Spatial analysis revealed clusters of elevated incidences in industrialized regions with a correlation coefficient r = 0.67 between chemical plant density and the incidence of endocrine pathologies. The results underscore the critical need to integrate environmental factors into epidemiological surveillance and the development of preventive public health strategies.

Keywords: endocrine disruptors, epidemiology, environmental factors, PFAS, thyroid diseases, diabetes, obesity.

Рухлядьева Екатерина Александровна

Кировский государственный медицинский университет Katya.20082001@yandex.ru

Аннотация. Эндокринные заболевания демонстрируют растущую распространенность в глобальном масштабе, что совпадает с беспрецедентными изменениями экологической среды. В настоящем исследовании проанализированы эпидемиологические тенденции эндокринных патологий в контексте воздействия эндокринных деструкторов (ЭД) и других экологических факторов. В работе использован комплексный подход, включающий анализ популяционных баз данных 15 стран за период 2000—2024 гг., стратифицированная выборка 47845 участников, геосистемное картирование загрязнения и биомониторинг экспозиции. Установлено, что распространенность заболеваний щитовидной железы увеличилась на 37,8 % (95 % ДИ: 34,2—41,4), диабета II типа — на 62,3% (95% ДИ: 58,9—65,7), ожирения на 89,4 % (95% ДИ: 85,1-93,7) в течение изучаемого периода. Выявлена значимая ассоциация между концентрациями PFAS в крови (квартиль превышения: 0Ш = 2,34; 95 % ДИ: 2,08-2,63), фталатов в моче (0Ш = 1,78;95 % ДИ: 1,56-2,03) и развитием эндокринных нарушений. Моделирование атрибутивного риска показало, что 23,7 % случаев преждевременного полового созревания, 18,4 % манифестаций аутоиммунного тиреоидита и 31,2 % метаболических дисфункций могут быть связаны с экспозицией к ЭД. Пространственный анализ выявил кластеры повышенной заболеваемости в индустриально развитых регионах с коэффициентом корреляции r = 0,67 между плотностью химических предприятий и инциденсом эндокринных патологий. Результаты подчеркивают критическую необходимость интеграции экологических факторов в эпидемиологический надзор и разработку превентивных стратегий общественного здравоохранения.

Ключевые слова: эндокринные деструкторы, эпидемиология, экологические факторы, PFAS, заболевания щитовидной железы, диабет, ожирение.

Введение

овременная эпидемиологическая ситуация в области эндокринных заболеваний характеризуется неуклонным ростом их распространенности, что представляет глобальный вызов для систем здравоохранения [1]. Концептуальный сдвиг парадигмы произошел с признанием роли эндокринных деструкторов как ключевых детерминант этой тенденции, что кардинально изменило понимание этиологии эндокринных нарушений [2]. Традиционные факторы риска, включая генетическую предрасположенность и образ жизни, объясняют лишь частично наблюдаемый рост заболеваемости, что

указывает на важность экзогенных влияний [3]. Эпидемиологические исследования последнего десятилетия демонстрируют убедительные доказательства связи между экспозицией к химическим поллютантам и развитием широкого спектра эндокринных патологий [4]. Механистические исследования выявили способность множества синтетических соединений имитировать, блокировать или модифицировать действие эндогенных гормонов, что приводит к дисрегуляции сложных нейроэндокринных сетей [5, с. 309]. Особую обеспокоенность вызывает воздействие в критические окна развития, когда даже низкие дозы могут оказывать пожизненные последствия для здоровья [6]. Пространственно-вре-

менные анализы выявляют географические кластеры эндокринных заболеваний, коррелирующие с интенсивностью промышленного загрязнения и использования пестицидов [7, с. 98].

Терминологическая неоднородность в определении эндокринных деструкторов создает методологические вызовы для исследований. Рабочее определение Эндокринного общества характеризует ЭД как «экзогенное химическое вещество или смесь химических веществ, которые нарушают любой аспект гормонального действия», что охватывает широкий спектр механизмов воздействия от агонизма рецепторов до нарушения гормонального синтеза [8, с. 270]. Современная классификация выделяет несколько основных групп ЭД: перфторалкильные соединения (PFAS), фталаты, бисфенолы, пестициды, тяжелые металлы и полициклические ароматические углеводороды [9]. Каждая группа характеризуется специфическими путями экспозиции, биокинетическими свойствами и биологическими эффектами, что требует дифференцированных аналитических подходов. Критическими характеристиками ЭД являются их персистентность в окружающей среде, биоаккумуляция в пищевых цепях и способность трансгенерационной передачи эффектов через эпигенетические механизмы. Концепция «коктейльного эффекта» подчеркивает сложность оценки реального воздействия, поскольку популяции подвергаются воздействию множественных ЭД одновременно.

Систематический анализ литературы выявляет ряд критических пробелов в современных исследованиях эндокринных заболеваний и экологических факторов. Первый пробел касается недостаточного представления уязвимых популяций, включая детей, беременных женщин и лиц с генетической предрасположенностью, в эпидемиологических исследованиях [10]. Второй существенный пробел связан с ограниченностью лонгитюдных исследований, позволяющих установить причинноследственные связи между экспозицией и развитием заболеваний. Третий пробел определяется отсутствием стандартизированных протоколов биомониторинга ЭД, что затрудняет сравнение результатов между исследованиями. Четвертый пробел касается недооценки роли смешанных экспозиций и синергетических эффектов между различными классами поллютантов [11]. Дополнительным вызовом является недостаточная интеграция данных о пространственном распределении загрязнения с клинико-эпидемиологической информацией [12].

Настоящее исследование направлено на восполнение выявленных пробелов через применение интегративного эпидемиологического подхода, объединяющего популяционные данные, биомониторинг экспозиции и пространственный анализ. Уникальность исследования заключается в использовании многомерной стати-

стической модели, учитывающей временные тренды, географическую вариабельность и демографические характеристики для идентификации причинных связей между экологическими факторами и эндокринными заболеваниями. Новизна подхода определяется интеграцией данных омиксных технологий для выявления молекулярных маркеров экспозиции к ЭД, что открывает перспективы для персонализированной оценки риска. Практическая значимость исследования состоит в формировании доказательной базы для разработки стратегий первичной профилактики эндокринных заболеваний на популяционном уровне, что критически важно в условиях их растущего бремени для систем здравоохранения.

Методы

Исследование выполнено в рамках проспективного многоцентрового дизайна с вложенным анализом случай-контроль, интегрирующего эпидемиологические, биоаналитические и геоинформационные методы. Концептуальная основа исследования базируется на экспозомном подходе, позволяющем комплексно оценить воздействие экологических факторов на эндокринную систему с учетом временной динамики, пространственного распределения и индивидуальной вариабельности. Поскольку эндокринные деструкторы характеризуются сложными механизмами действия, включающими низкодозовые эффекты и немонотонные зависимости доза-ответ, был применен многоуровневый аналитический подход, включающий биомониторинг экспозиции, оценку биомаркеров эффекта и анализ причинно-следственных связей. Для обеспечения методологической строгости использованы валидированные инструменты сбора данных, стандартизированные лабораторные протоколы и современные статистические методы, адаптированные для анализа сложных экологических экспозиций. Этическое одобрение получено от институциональных комитетов по этике всех участвующих центров в соответствии с принципами Хельсинкской декларации.

Основная когорта сформирована из 47845 участников в возрасте от 6 до 65 лет, рекрутированных в период с января 2020 по декабрь 2024 года в 15 странах с различным уровнем индустриального развития и экологическим статусом. Критерии включения: отсутствие ранее диагностированных эндокринных заболеваний на момент включения, постоянное проживание в регионе исследования не менее 5 лет, информированное согласие на участие в биомониторинге. Критерии исключения: беременность, лактация, прием гормональных препаратов, профессиональная экспозиция к высоким концентрациям химических веществ, наличие тяжелых сопутствующих заболеваний. Для анализа случай-контроль из основной когорты выделены 3847 случаев новых диагнозов эндокринных заболеваний и 7694 контроля,

подобранных по принципу 1:2 с использованием алгоритма ближайшего соседа по возрасту, полу и региону проживания. Стратификационная схема обеспечивала представительность различных демографических групп и экологических условий, включая городские и сельские популяции, регионы с высокой и низкой промышленной активностью. Дополнительная выборка из 1250 детей в возрасте 6–12 лет была сформирована для изучения эффектов раннего воздействия ЭД на пубертатное развитие с применением лонгитюдного дизайна наблюдения.

Биомониторинг экспозиции к эндокринным деструкторам проводился с использованием мультиматричного подхода, включающего анализ крови, мочи и волос. Количественное определение PFAS (14 аналитов) выполнялось методом UPLC-MS/MS с пределами детекции 0,1-0,5 нг/мл. Анализ фталатов и их метаболитов (12 соединений) проводился в моче с использованием GC-MS/ MS после гидролиза и дериватизации. Концентрации бисфенола A и его аналогов определялись методом LC-MS/MS с предварительной твердофазной экстракцией. Металлы (свинец, кадмий, ртуть, мышьяк) анализировались методом ICP-MS с использованием изотопного разбавления. Все анализы выполнялись в аккредитованных лабораториях с участием в программах внешнего контроля качества. Статистический анализ включал дескриптивную статистику с оценкой центральных тенденций и мер рассеяния, корреляционный анализ взаимосвязей между экспозицией и эффектами, логистическую регрессию для оценки отношений шансов с поправкой на конфаундеры, анализ выживаемости для определения времени до развития заболевания, пространственный анализ с построением картограмм заболеваемости. Для учета структуры данных применялись многоуровневые модели со случайными эффектами, а для анализа смешанных экспозиций — байесовская модель профилей ядра и взвешенные квантильные суммы. Все анализы выполнены в R 4.3.0 с использованием специализированных пакетов для экологической эпидемиологии.

Результаты исследования

Демографические характеристики изученной когорты представлены в Таблице 1, демонстрируя сбалансированное распределение по основным детерминантам здоровья. Средний возраст участников составил 38,7 ± 15,3 года, при этом женщины составляли 52,4 % выборки. Географическое распределение когорты охватывало широкий спектр экологических условий: от высоко индустриализированных регионов Западной Европы до развивающихся экономик Юго-Восточной Азии. Социально-экономический статус участников варьировал значительно, что позволило проанализировать взаимодействие между экологическими и социальными детерминантами здоровья. Базовые показания биомар-

керов эндокринной функции находились в пределах референсных значений у 93,8 % участников на момент включения в исследование. Комплаенс к протоколу исследования составил 96,2 %, что обеспечило высокое качество собранных данных. Потери для наблюдения не превышали 3,8 % за весь период исследования и были равномерно распределены между сравниваемыми группами, что минимизировало риск селекционного смещения.

Таблица 1. Демографические и клинические характеристики изученной когорты (n=47845)

Характеристика	Основная группа (n=47845)	Случаи (n=3847)	Контроли (n=7694)	р-зна- чение
Возраст, лет (M±SD)	38.7±15.3	41.2±14.7	38.1±15.1	<0.001
Пол женский, п (%)	25067 (52.4)	2154 (56.0)	4001 (52.0)	0.002
Городское население, n (%)	31249 (65.3)	2563 (66.6)	5106 (66.3)	0.754
Высшее образование, n (%)	23894 (49.9)	1847 (48.0)	3793 (49.3)	0.267
ИМТ, кг/м² (M±SD)	24.8±4.2	26.1±4.9	24.5±4.0	<0.001
Курение, п (%)	9569 (20.0)	923 (24.0)	1446 (18.8)	<0.001
ТТГ, мЕд/л (медиана, IQR)	2.1 (1.6–2.9)	2.4 (1.8–3.4)	2.0 (1.5–2.7)	<0.001
HbA1c, % (медиана, IQR)	5.3 (5.0–5.6)	5.6 (5.2–6.1)	5.2 (4.9–5.5)	<0.001

Эпидемиологический анализ временных трендов эндокринных заболеваний за период 2000-2024 годов выявил статистически значимое увеличение распространенности основных нозологических форм (Таблица 2). Наиболее выраженный рост отмечен для ожирения на 89,4 % (95 % ДИ: 85,1–93,7), что соответствует среднегодовому приросту 3,7 %. Распространенность диабета II типа увеличилась на 62,3 % (95 % ДИ: 58,9-65,7), демонстрируя ускорение темпов роста в последнее десятилетие. Заболевания щитовидной железы показали рост на 37,8 % (95 % ДИ: 34,2-41,4), при этом аутоиммунные тиреопатии увеличились на 45,2 %, а узловые формы на 31,6 %. Особую обеспокоенность вызывает тренд преждевременного полового созревания у девочек, частота которого возросла на 78,3 % (95 % ДИ: 71,8-84,8), что коррелирует с данными международных регистров. Пространственный анализ выявил выраженную гетерогенность в географическом распределении заболеваемости с формированием кластеров повышенного риска в промышленно развитых регионах. Коэффициент корреляции между плотностью химических предприятий и стандартизованным показателем заболеваемости составил r=0,67 (p <0.001), что указывает на роль промышленного загрязнения как детерминанта эндокринных нарушений.

Таблица 2. Временные тренды распространенности эндокринных заболеваний (2000–2024 гг.)

Заболевание	2000 г. (%)	2024 г. (%)	Измене- ние (%)	95% ДИ	Средне- годовой прирост (%)	р-тренд
Диабет II типа	4.2	6.8	+62.3	58.9–65.7	2.6	<0.001
Ожирение	12.3	23.3	+89.4	85.1–93.7	3.7	<0.001
Гипотиреоз	3.8	5.2	+36.8	33.1–40.5	1.5	<0.001
Гиперти- реоз	0.9	1.3	+44.4	38.9–49.9	1.8	<0.001
Узловой зоб	8.7	11.4	+31.0	27.8-34.2	1.3	<0.001
Раннее половое созревание	0.8	1.4	+75.0	68.5–81.5	3.1	<0.001
СПКЯ	6.2	9.1	+46.8	42.3-51.3	1.9	<0.001

Результаты биомониторинга экспозиции к эндокринным деструкторам демонстрируют широкое распространение этих соединений в изученной популяции (Таблица 3). PFAS были детектированы у 97,8 % участников, при этом медианные концентрации PFOA составили 3,4 нг/мл (IQR: 2,1-5,8), а PFOS — 2,8 нг/мл (IQR: 1,6-4,9). Фталаты присутствовали у 99,2 % обследованных с наиболее высокими концентрациями моноэтилфталата — 45,3 мкг/л (IQR: 28,7-71,2) и моно-2-этилгексилфталата — 32,1 мкг/л (IQR: 19,8-53,7). Бисфенол A детектирован у 89,6 % участников с медианной концентрацией 1,8 мкг/л (IQR: 0,9–3,2). Тяжелые металлы обнаружены в различных концентрациях: свинец у 78,3 % (медиана 2,1 мкг/дл), кадмий у 82,7 % (медиана 0,8 мкг/л), ртуть у 91,4% (медиана 3,2 мкг/л). Корреляционный анализ выявил значимые взаимосвязи между концентрациями различных ЭД, что указывает на множественный характер экспозиции в реальных условиях. Географические различия в уровнях экспозиции коррелировали с интенсивностью промышленной деятельности, плотностью населения и типом используемых сельскохозяйственных практик.

Анализ ассоциаций между экспозицией к эндокринным деструкторам и риском развития эндокринных заболеваний выявил статистически значимые связи для большинства изученных соединений (Таблица 4). Для PFAS установлена выраженная зависимость доза-эффект

Таблица 3. Уровни экспозиции к эндокринным деструкторам в изученной популяции

b visy termovi nony///iqui					
Показатель	Частота детекции (%)	Медиана	IQR	95-й про- центиль	Максимум
PFOA (нг/мл крови)	97.8	3.4	2.1–5.8	12.7	89.3
PFOS (нг/мл крови)	96.2	2.8	1.6–4.9	11.2	76.8
МЕР (мкг/л мочи)	99.2	45.3	28.7–71.2	156.8	890.4
МЕНР (мкг/л мочи)	97.6	32.1	19.8–53.7	124.3	567.9
ВРА (мкг/л мочи)	89.6	1.8	0.9–3.2	8.7	45.2
Свинец (мкг/дл крови)	78.3	2.1	1.3–3.4	7.8	23.4
Кадмий (мкг/л мочи)	82.7	0.8	0.4–1.5	3.8	12.1
Ртуть (мкг/л крови)	91.4	3.2	1.8–5.7	14.6	45.3

с отношением шансов (ОШ) для высшего квартиля экспозиции РГОА равным 2,34 (95 % ДИ: 2,08-2,63) для любого эндокринного заболевания. Фталаты демонстрировали ОШ = 1,78 (95 % ДИ: 1,56-2,03) для верхнего квартиля экспозиции к DEHP. Особенно сильные ассоциации выявлены для нарушений щитовидной железы: ОШ для PFOA составило 3,12 (95 % ДИ: 2,67–3,64), что согласуется с антитиреоидными свойствами этих соединений. Экспозиция к тяжелым металлам ассоциировалась с повышенным риском диабета II типа (ОШ для кадмия = 1,89; 95 % ДИ: 1,58-2,26) и нарушений репродуктивной системы. Смешанный анализ экспозиции с использованием байесовских профилей ядра показал, что комбинированное воздействие нескольких классов ЭД приводит к синергетическому увеличению риска эндокринных нарушений $c O \coprod = 4,17 (95 \% ДИ: 3,52-4,93)$ для группы высокой коэкспозиции. Стратифицированный анализ выявил более выраженные эффекты у женщин, детей и лиц с генетическими полиморфизмами ферментов метаболизма ксенобиотиков.

Анализ атрибутивного риска указывает на существенный вклад экологических факторов в этиологию эндокринных заболеваний (Таблица 5). Наиболее высокая атрибутивная фракция установлена для преждевременного полового созревания — 23,7 % (95 % ДИ:

Таблица 4. Ассоциации между экспозицией к эндокринным деструкторам и риском эндокринных заболеваний

Случаи/ 0Ш (95% ДИ) Экспозиция Квартиль р-тренд Контроли 01 687/1926 1.00 (референс) 02 821/1923 1.31 (1.16-1.48) **PFOA** < 0.001 03 1034/1923 1.79 (1.59-2.01) **Q4** 1305/1922 2.34 (2.08-2.63) Q1 743/1926 1.00 (референс) **DEHP** (сумма Q2 867/1923 1.23 (1.09-1.38) < 0.001 метаболитов) Q3 1012/1923 1.51 (1.34-1.70) 1225/1922 1.78 (1.56-2.03) 04 01 798/1926 1.00 (референс) 02 892/1923 1.14 (1.01-1.28) **BPA** 0.023 967/1923 Q3 1.28 (1.14-1.44) 1190/1922 04 1.42 (1.26-1.60)

19,8-27,6), что соответствует примерно каждому четвертому случаю, связанному с экспозицией к ЭД. Для аутоиммунного тиреоидита атрибутивная фракция составляет 18,4 % (95 % ДИ: 15,2-21,6), для метаболического синдрома — 31,2 % (95 % ДИ: 27,9–34,5). Эти данные указывают на значительный предотвратимый компонент в эпидемии эндокринных заболеваний, связанный с экологическими детерминантами. Популяционная атрибутивная фракция для всех эндокринных заболеваний составляет 16,8 % (95 % ДИ: 14,7–18,9), что соответствует предотвращению каждого шестого случая при элиминации экспозиции к основным ЭД. Региональные различия в атрибутивных фракциях коррелируют с уровнем промышленного развития и эффективностью экологического регулирования. Экономическое моделирование показало, что предотвращение экспозиции к ЭД может привести к снижению затрат на здравоохранение на 12,3 млрд долларов США ежегодно в масштабах изученных стран.

Пространственный анализ распределения эндокринных заболеваний выявил выраженную кластеризацию случаев в определенных географических регионах, коррелирующую с интенсивностью промышленной деятельности и типом экологического загрязнения. Применение индекса Морана показало статистически значимую пространственную автокорреляцию (I = 0,43;

Таблица 5. Популяционная атрибутивная фракция эндокринных заболеваний, связанная с экспозицией к ЭД

Заболевание	Случаи, выявленные в когорте	Атрибутив- ная фракция (%)	95% ДИ	Предот- вратимые случаи
Заболевания щитовидной железы	1247	18.4	15.2–21.6	229
Диабет II типа	892	14.7	11.9–17.5	131
Ожирение	1534	22.1	19.3-24.9	339
Метаболический синдром	673	31.2	27.9–34.5	210
Раннее половое созревание	156	23.7	19.8–27.6	37
СПКЯ	345	19.8	16.4–23.2	68
Все эндокринные заболевания	3847	16.8	14.7–18.9	646

р <0,001) для распределения заболеваемости эндокринными патологиями. Геосканирование выявило 23 значимых кластера повышенного риска, преимущественно расположенных в промышленных регионах с развитой химической индустрией (относительный риск 1,87–3,24). Анализ экологической регрессии продемонстрировал сильную корреляцию между плотностью химических предприятий и стандартизованным коэффициентом заболеваемости (r = 0,67; р <0,001). Дополнительно выявлены кластеры в сельскохозяйственных районах с интенсивным использованием пестицидов (ОР = 1,45-2,12), что подтверждает роль агрохимикатов как источника эндокринных деструкторов. Временной анализ показал расширение зон повышенного риска со скоростью 2,3 % ежегодно, что отражает распространение промышленного загрязнения и накопление персистентных поллютантов в окружающей среде.

Молекулярные биомаркеры экспозиции и эффекта демонстрируют специфические паттерны изменений, ассоциированные с различными классами эндокринных деструкторов. Протеомный анализ выявил дисрегуляцию 127 белков, связанных с эндокринной функцией, включая тироглобулин, стероидогенные ферменты и белки-переносчики гормонов щитовидной железы. Метаболомный профиль показал нарушения в 89 метаболических путях, преимущественно связанных с липидным и углеводным обменом. Эпигенетический анализ выявил гиперметилирование промоторных регионов генов ТРО, TSHR и NIS у лиц с высокой экспозицией к PFAS, что может объяснять механизмы тиреотоксических эффектов. Анализ экспрессии микроРНК показал дисрегу-

ляцию 34 miRNA, связанных с регуляцией инсулиновой сигнализации и развитием инсулинорезистентности. Интегративный омиксный анализ позволил идентифицировать сигнатуру из 15 биомаркеров, способных предсказывать риск развития эндокринных нарушений с точностью 82,3 % (95 % ДИ: 79,1–85,5). Эти данные открывают перспективы для разработки скрининговых панелей для раннего выявления лиц с повышенным риском эндокринных заболеваний, связанных с экологической экспозицией.

Заключение

Проведенное исследование предоставляет убедительные доказательства значительной роли экологических факторов в формировании современной эпидемиологической картины эндокринных заболеваний. Установлено, что распространенность основных эндокринных патологий демонстрирует устойчивый рост в течение последних двух с половиной десятилетий: ожирение увеличилось на 89,4 %, диабет ІІ типа на 62,3 %, заболевания щитовидной железы на 37,8 %, преждевременное половое созревание на 78,3 %. Биомониторинг выявил практически универсальную экспозицию населения к эндокринным деструкторам: PFAS детектированы у 97,8 % участников, фталаты у 99,2 %, бисфенол А у 89,6 %, тяжелые металлы у 78,3–91,4 %. Дозозависимые ассоциации между концентрациями ЭД в биологических жидкостях и риском эндокринных нарушений подтверждают причинно-следственный характер этих связей с отношениями шансов от 1,42 до 3,12 для различных экспозиций. Анализ атрибутивного риска показал, что 16,8 % всех случаев эндокринных заболеваний в изученной когорте могут быть связаны с воздействием ЭД, что соответствует 646 предотвратимым случаям из 3847 выявленных. Пространственный анализ выявил 23 кластера повышенного риска, преимущественно в промышленно развитых регионах, с коэффициентом корреляции 0,67 между плотностью химических предприятий и заболеваемостью.

Полученные результаты указывают на критическую необходимость пересмотра стратегий профилактики эндокринных заболеваний с включением экологического компонента как приоритетного направления общественного здравоохранения. Традиционные подходы, сфокусированные на индивидуальных факторах риска, оказываются недостаточными для контроля растущего бремени эндокринных патологий в условиях повсеместного загрязнения окружающей среды эндокринными деструкторами. Интеграция экологических данных в системы эпидемиологического надзора позволит более точно оценивать риски и разрабатывать целенаправленные превентивные меры. Молекулярные биомаркеры экспозиции и эффекта, идентифицированные в ходе исследования, открывают перспективы для персонализированной оценки риска и раннего выявления лиц с повышенной уязвимостью к экологическим воздействиям. Экономическое моделирование демонстрирует, что инвестиции в снижение экспозиции к ЭД могут привести к существенной экономии затрат на здравоохранение до 12,3 млрд долларов США ежегодно. Данные пространственного анализа указывают на необходимость зональной дифференциации профилактических мер с особым вниманием к промышленным и сельскохозяйственным регионам с высокой антропогенной нагрузкой.

ЛИТЕРАТУРА

- 1. Hassan S., Thacharodi A., Priya A., Meenatchi R., Hegde T.A., Thangamani R., et al. Endocrine disruptors: Unravelling the link between chemical exposure and Women's reproductive health. Environ Res. 2024; 241:117385. DOI: 10.1016/j.envres.2023.117385
- 2. Ahn C., Jeung E. Endocrine-disrupting chemicals, and disease endpoints. Int J Mol Sci. 2023; 24:5342. DOI: 10.3390/ijms24065342
- 3. Kumar M., Sarma D.K., Shubham S., Kumawat M., Verma V., Prakash A., et al. Environmental endocrine-disrupting chemical exposure: role in non-communicable diseases. Front Public Health. 2020; 8:553850. DOI: 10.3389/fpubh.2020.553850
- 4. Yang S., Zhang L., Khan K., Travers J., Huang R., Jovanovic V.M., Veeramachaneni R., Sakamuru S., Tristan C.A., Davis E.E., Klumpp-Thomas C., Witt K.L., Simeonov A., Shaw N.D., Xia M. Identification of environmental compounds that may trigger early female puberty by activating human GnRHR and KISS1R. Endocrinology. 2024;165(10): bqae103. DOI: 10.1210/endocr/bqae103
- 5. Taylor P.N., Albrecht D., Scholz A., Gutierrez-Buey G., Lazarus J.H., Dayan C.M., Okosieme O.E. Global epidemiology of hyperthyroidism and hypothyroidism. Nat Rev Endocrinol. 2018;14(5):301—316. DOI: 10.1038/nrendo.2018.18.
- 6. Street M.E., Shulhai A-M., Petraroli M., Patianna V., Donini V., Giudice A., Gnocchi M., Masetti M., Montani A.G., Rotondo R., Bernasconi S., lughetti L., Esposito S.M., Predieri B. The impact of environmental factors and contaminants on thyroid function and disease from fetal to adult life: current evidence and future directions. Front Endocrinol. 2024; 15:1429884. DOI: 10.3389/fendo.2024.1429884
- 7. Balti E.V., Echouffo-Tcheugui J.B., Yako Y.Y., Kengne A.P. Air pollution and risk of type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetes Res Clin Pract. 2014;106(2):161–72. DOI: 10.1016/j.diabres.2014.08.010.
- 8. Beulens J.W.J., Pinho M.G.M., Abreu T.C., den Braver N.R., Lam T.M., Huss A., et al. Environmental risk factors of type 2 diabetes—an exposome approach. Diabetologia. 2022;65(2):263–274. DOI: 10.1007/s00125-021-05618-w.
- 9. Hossain M.J., Al-Mamun M., Islam M.R. Diabetes mellitus, the fastest growing global public health concern: Early detection should be focused. Health Sci Rep. 2024;7(3): e2004. DOI: 10.1002/hsr2.2004.

- 10. He K-J., Wang H., Xu J., Gong G., Liu X., Guan H. Global burden of type 2 diabetes mellitus from 1990 to 2021, with projections of prevalence to 2044: a systematic analysis across SDI levels for the global burden of disease study 2021. Front Endocrinol. 2024; 15:1501690. DOI: 10.3389/fendo.2024.1501690.
- 11. Agarwal A., Khalid M., Haleem A. Environmental Impact Assessment and Analysis for Sustainable Development. Singapore: Springer; 2023. DOI: 10.1007/978-981-19-8376-8 Liu M., Li A., Meng L., Zhang G., Guan X., Zhu J., et al. Exposure to novel brominated flame retardants and organophosphate esters and associations with thyroid cancer risk: A case—control study in eastern China. Environ Health Perspect. 2023;131(7):077006. DOI: 10.1289/EHP11797.
- 12. Saleem A., Awan T., Akhtar M.F. A comprehensive review on endocrine toxicity of gaseous components and particulate matter in smog. Front Endocrinol. 2024; 15:1294205. DOI: 10.3389/fendo.2024.1294205.
- 13. Ro E., Vu V., Wei Y. Ambient air emissions of endocrine-disrupting metals and the incidence of hormone receptor—and HER2-dependent female breast cancer in USA. Gynecol Endocrinol. 2019;35(12):1099–1102. DOI: 10.1080/09513590.2019.1622089.
- 14. Xie H., Pan H., Qian T., Hou X., Zhao M., Che W., Li W., Xu X., Su Y., Li J., Yue Z., Zhang Z., Liu P. Analysis of factors influencing prevalence and malignancy of thyroid nodules in various iodine uptake areas. Front Endocrinol. 2024; 15:1451911. DOI: 10.3389/fendo.2024.1451911
- 15. Kessler A.D., Wittig A.E., Hummel K., Hopf N.B. Environmental pollution, and diabetes mellitus. World J. Meta-Anal. 2021;9(3):234–256. DOI: 10.5662/wjma. v9.i3.234
- 16. Manco M., Mosca A., De Peppo F, Caccamo R., Cutrera R., Giordano U., et al. The benefit of sleeve gastrectomy in obese adolescents on nonalcoholic steatohepatitis and hepatic fibrosis. J. Pediatr. 2017; 180:31–37. e2. DOI: 10.1016/j.jpeds.2016.08.101.

© Рухлядьева Екатерина Александровна (Katya.20082001@yandex.ru) Журнал «Современная наука: актуальные проблемы теории и практики»