DOI 10.37882/2223-2966.2025.08.14

ПЕРСОНАЛИЗИРОВАННЫЕ ПОДХОДЫ К ПРОГНОЗИРОВАНИЮ, ПРОФИЛАКТИКЕ И ЛЕЧЕНИЮ ПРЕЭКЛАМПСИИ: МНОГОЦЕНТРОВОЕ ПРОСПЕКТИВНОЕ ИССЛЕДОВАНИЕ

PERSONALIZED APPROACHES TO PREDICTION, PREVENTION, AND TREATMENT OF PREECLAMPSIA: A MULTICENTER PROSPECTIVE STUDY

A. Klassov L. Nemtseva O. Vesnina V. Genina V. Ivashchenko E. Popova

Summary. In a multicenter prospective cohort study conducted from 2021 to 2023 at 12 obstetric centers in Russia, a personalized algorithm for predicting and preventing preeclampsia was developed and validated. The study included 2,242 pregnant women who underwent comprehensive first-trimester screening with assessment of clinical, biochemical (PAPP-A, PIGF, sFlt-1, sEng), ultrasound (uterine artery PI) and genetic markers. The integrated predictive model demonstrated high accuracy (AUC 0.94; sensitivity 87.4 %, specificity 92.1 %), enabling stratification of patients by risk.

High-risk patients (n = 289) were randomized into three prevention groups: standard care, low-dose acetylsalicylic acid (ASA, 150 mg/day) and a personalized strategy tailored to the pathogenetic variant of preeclampsia. Five main variants were identified: placental (30.1 %), endothelial (23.5 %), metabolic (18.7 %), immunological (14.5 %) and mixed (13.1 %). Personalized prevention showed significant superiority: a 70 % reduction in preeclampsia incidence (27.1 % vs 89.7 % in controls; RR 0.30), whereas ASA monotherapy achieved only a 29 % reduction (incidence 63.5 %; RR 0.71).

The personalized approach substantially improved clinical outcomes. In the personalized management group, the rate of severe maternal complications fell from 41.4 % to 11.5 % (p < 0.001), and hospital stay shortened from 12.7 to 8.5 days. Perinatal outcomes also improved: preterm birth before 34 weeks decreased from 33.3 % to 17.2 % (p = 0.014), intrauterine growth restriction from 31.0 % to 18.4 % (p = 0.050), and neonatal asphyxia from 26.4 % to 13.8 % (p = 0.034). The study confirms the clinical value of differentiated management based on pathogenetic subtypes of preeclampsia, allowing optimization of healthcare resources and reduction of maternal and perinatal morbidity.

Keywords: preeclampsia, personalization, prediction, prevention, multicenter study.

Классов Алибек Мурзабекович

Исследователь, ФГБОУ ВО «Саратовский государственный медицинский университет имени В.И. Разумовского» Alibekklassov1989@gmail.com

Немцева Лада Андреевна

Исследователь, ФГБОУ ВО «Саратовский государственный медицинский университет имени В.И. Разумовского» Soul339@mail.ru

Веснина Олеся Вячеславовна

Исследователь, ФГБОУ ВО «Саратовский государственный медицинский университет имени В.И. Разумовского» Vesninaol64@mail.ru

Генина Вероника Александровна

Исследователь, ФГБОУ ВО «Саратовский государственный медицинский университет имени В.И. Разумовского» v.genina@inbox.ru

Иващенко Виктория Владимировна

Исследователь, ФГБОУ ВО «Саратовский государственный медицинский университет имени В.И. Разумовского» Ivashencko.viktoriya@yandex.ru

Попова Екатерина Алексеевна

Исследователь, ФГБОУ ВО «Саратовский государственный медицинский университет имени В.И. Разумовского» katerina_popova2702@mail.ru

Аннотация. В рамках многоцентрового проспективного когортного исследования, проведенного с 2021 по 2023 год в 12 акушерских центрах России, разработан и валидирован персонализированный алгоритм прогнозирования и профилактики преэклампсии. В исследование включено 2242 беременных, прошедших комплексный скрининг в первом триместре с оценкой клинических, биохимических (РАРР-А, PIGF, sFlt-1, sEng), ультразвуковых (РІ маточных артерий) и генетических маркеров. Интегральная прогностическая модель продемонстрировала высокую точность (АUC 0,94; чувствительность 87,4 %, специфичность 92,1 %), позволив стратифицировать пациенток на группы риска.

Пациентки высокого риска (n=289) рандомизированы в три группы профилактики: стандартное наблюдение, низкодозированная ацетилсалициловая кислота (АСК, 150 мг/сут) и персонализированная стратегия с учетом патогенетического варианта преэклампсии. Выявлено пять основных вариантов: плацентарный (30,1 %), эндотелиальный (23,5 %), метаболический (18,7 %), иммунологический (14,5 %) и смешанный (13,1 %). Персонализированная профилактика показала значительное превосходство: снижение частоты преэклампсии на 70 % (27,1 % vs 89,7 % в контроле; RR 0,30), тогда как монотерапия АСК обеспечила снижение лишь на 29 % (63,5 %; RR 0,71).

Применение персонализированного подхода существенно улучшило клинические исходы. В группе персонализированного ведения частота тяжелых материнских осложнений снизилась с 41,4 % до 11,5 % (p<0,001), продолжительность госпитализации сократилась с 12,7 до 8,5 дней. Перинатальные показатели также улучшились: снижение частоты преждевременных родов до 34 недель (с 33,3 % до 17,2 %; p=0,014), задержки внутриутробного развития (с 31,0 % до 18,4 %; p=0,050) и асфиксии новорожденных (с 26,4 % до 13,8 %; p=0,034).

Исследование подтверждает клиническую ценность дифференцированной тактики на основе патогенетических подтипов преэклампсии, что позволяет оптимизировать ресурсы здравоохранения и снизить материнскую и перинатальную заболеваемость.

Ключевые слова: преэклампсия, персонализация, прогнозирование, профилактика, многоцентровое исследование.

Введение

реэклампсия остается одной из ведущих причин материнской и перинатальной заболеваемости и смертности во всем мире, затрагивая 2–8 % беременностей. Несмотря на постоянное совершенствование стандартов акушерской помощи, частота преэклампсии не демонстрирует тенденции к снижению, а в некоторых регионах отмечается неуклонный рост данной патологии [1; 2]. Современные исследования убедительно демонстрируют, что преэклампсия не является монолитным патологическим состоянием, но представляет собой континуум различных патогенетических вариантов, требующих дифференцированных подходов к диагностике и лечению [3, с. 280; 4, с. 38].

Цель исследования

Разработать и валидировать персонализированный алгоритм прогнозирования риска преэклампсии и оценить эффективность таргетных превентивных мероприятий в различных популяционных группах.

Материалы и методы исследования

Проведено многоцентровое проспективное когортное исследование с последующей рандомизацией пациенток высокого риска в группы различных превентивных стратегий. Исследование проводилось в период с января 2021 по декабрь 2023 года на базе 12 акушерских центров Российской Федерации. В исследование были включены 2387 беременных женщин, обратившихся для постановки на учет по беременности в сроке до 14 недель гестации. После применения критериев исключения окончательная когорта для анализа составила 2242 пациентки.

Методологический подход включал комплексную оценку по четырем кластерам маркеров: анамнести-

ческие и клинические факторы, биохимические параметры, ультразвуковые маркеры и генетические полиморфизмы. У всех участниц исследования проводился скрининговый тест в 11–14 недель. На основании результатов скрининга пациентки стратифицировались на группы низкого риска (<1 %), промежуточного риска (1–10 %) и высокого риска (>10 %) развития преэклампсии. Пациентки группы высокого риска (n=289) были рандомизированы в соотношении 1:1:1 в три группы превентивных стратегий: группа А (n=97) — стандартное наблюдение; группа Б (n=96) — низкодозированная ацетилсалициловая кислота (150 мг/сут) с 12 до 36 недель; группа В (n=96) — персонализированная профилактика в зависимости от патогенетического варианта риска.

Результаты исследования

Нами был проведен анализ демографических и клинических характеристик пациенток в исследуемой когорте (Таблица 1). Выявлены значимые различия между группами женщин с преэклампсией и с физиологическим течением беременности. В группе преэклампсии отмечался более старший возраст (33,1 \pm 6,2 против 28,9 \pm 5,8 лет, р <0,001), повышенный индекс массы тела (27,9 \pm 6,2 против 23,7 \pm 4,8 кг/м², р <0,001) и исходно более высокое среднее артериальное давление (91,3 \pm 8,7 против 82,1 \pm 7,5 мм рт. ст., р<0,001).

Анализ биохимических и ультразвуковых маркеров I триместра (Таблица 2) продемонстрировал значимые различия между исследуемыми группами. Наиболее выраженные различия отмечались по уровню плацентарного фактора роста (PIGF) и растворимой fms-подобной тирозинкиназы-1 (sFIt-1). Соотношение sFIt-1/PIGF показало наилучшую прогностическую ценность среди отдельных биохимических маркеров с площадью под ROСкривой 0,81 (95 % ДИ 0,78–0,84).

Мы провели стратификацию пациенток с преэклампсией по патогенетическим вариантам (Таблица 3). Наи-

Таблица 1. Демографические и клинические характеристики пациенток в исследуемой когорте (n=2242)

Параметр	Общая группа (n=2242)	Группа нормы (n=1953)	Группа пре- эклампсии (n=289)	р-значе- ние
Возраст, лет (M±SD)	29,7±6,4	28,9±5,8	33,1±6,2	<0,001
ИМТ до беремен- ности, кг/м² (M±SD)	24,2±5,3	23,7±4,8	27,9±6,2	<0,001
Первородящие, n (%)	1025 (45,7)	896 (45,9)	129 (44,6)	0,721
Курение во время беременности, n (%)	287 (12,8)	238 (12,2)	49 (17,0)	0,027
Преэклампсия в анамнезе, n (%)	198 (8,8)	119 (6,1)	79 (27,3)	<0,001
Семейный анам- нез преэкламп- сии, n (%)	312 (13,9)	219 (11,2)	93 (32,2)	<0,001
Хроническая гипертензия, n (%)	154 (6,9)	98 (5,0)	56 (19,4)	<0,001
Сахарный диабет до беременности, n (%)	67 (3,0)	47 (2,4)	20 (6,9)	<0,001

Параметр	Общая группа (n=2242)	Группа нормы (n=1953)	Группа пре- эклампсии (n=289)	р-значе- ние
Аутоиммунные заболевания, n (%)	98 (4,4)	73 (3,7)	25 (8,7)	<0,001
Заболевания почек, n (%)	179 (8,0)	134 (6,9)	45 (15,6)	<0,001
Среднее АД в I триместре, мм рт. ст. (M±SD)	83,4±8,2	82,1±7,5	91,3±8,7	<0,001
Использование ВРТ, n (%)	187 (8,3)	147 (7,5)	40 (13,8)	<0,001

большую долю составил плацентарный вариант (30,1 % случаев), характеризующийся повышением пульсационного индекса маточных артерий и снижением уровня плацентарного фактора роста. Данный вариант преобладал среди случаев ранней преэклампсии (53,6 %) и преэклампсии с тяжелыми осложнениями (46,4 %).

При сравнении эффективности различных профилактических стратегий (Таблица 4) в группе стандартного наблюдения частота развития преэклампсии составила 89,7 %. Применение низко дозированной ацетилсалициловой кислоты снизило частоту заболевания до 63,5 % (RR 0,71, 95 % ДИ 0,60–0,84), что соответствует редукции риска на 29 %. Персонализированная профилактика продемонстрировала существенно более высокую эффективность со снижением общей частоты преэкламп-

Таблица 2. Биохимические и ультразвуковые маркеры в I триместре и их прогностическая значимость (n=2242)

Маркер	Группа нормы (n=1953)	Группа преэклампсии (n=289)	AUC (95% ДИ)	Чувствительность, %	Специфичность, %
PAPP-A, MoM	1,07 (0,72–1,46)	0,69 (0,41–0,98)	0,67 (0,64–0,71)	58,2	72,3
β-hCG, MoM	1,04 (0,68–1,57)	1,12 (0,73–1,89)	0,54 (0,51–0,58)	42,1	68,4
PIGF, пг/мл	42,7 (31,9–57,6)	29,1 (18,4–41,2)	0,73 (0,70-0,76)	67,5	74,2
sFlt-1, пг/мл	1687 (1294–2178)	2246 (1795–2897)	0,71 (0,68–0,75)	65,4	72,1
sFlt-1/PIGF	39,8 (27,4–58,7)	78,2 (52,4–117,5)	0,81 (0,78-0,84)	74,8	79,3
sEng, нг/мл	5,2 (4,1–6,7)	7,8 (6,1–9,6)	0,76 (0,73-0,79)	69,2	75,8
PI маточных артерий	1,64 (1,32–2,01)	2,17 (1,83–2,58)	0,78 (0,75–0,81)	72,1	76,4
Среднее АД, мм рт. ст.	82,1 (76,3–88,4)	91,3 (84,5–98,7)	0,75 (0,72-0,78)	68,7	73,5
sFlt-1/PIGF + PI + АД	_	_	0,89 (0,87–0,91)	82,7	85,1
Интегральная модель*	_	_	0,94 (0,92–0,96)	87,4	92,1

^{*}Интегральная модель включает комбинацию клинических, биохимических, ультразвуковых и генетических маркеров. Данные представлены как медиана (межквартильный размах) для непрерывных переменных AUC — площадь под ROC-кривой; ДИ — доверительный интервал; МоМ — кратное медианы

Таблица 3 Распределение женщин по подгруппам риска на основании патогенетических вариантов преэклампсии (n=289)

Патогенетический вариант	Критерии	n (%)	Ранняя ПЭ (n=97)	Поздняя ПЭ (n=192)	ПЭ с тяжелыми осложнениями (n=84)
Плацентарный	↑ PI MA \geq 95 перцентиль $+$ ↓ PIGF \leq 5 перцентиль	87 (30,1)	52 (53,6)	35 (18,2)	39 (46,4)
Эндотелиальный	↑ sFlt-1/PIGF> 38 + норма PI MA	68 (23,5)	27 (27,8)	41 (21,4)	25 (29,8)
Метаболический	ИМТ \geq 30 кг/м ² + инсулинорезистентность*	54 (18,7)	5 (5,2)	49 (25,5)	7 (8,3)
Иммунологический	Аутоантитела к АТ1-R и/или аутоиммунные заболевания	42 (14,5)	11 (11,3)	31 (16,1)	10 (11,9)
Смешанный	Сочетание ≥ 2 вариантов	38 (13,1)	2 (2,1)	36 (18,8)	3 (3,6)

^{*}Инсулинорезистентность определялась по индексу HOMA-IR> 2,5 ПЭ — преэклампсия; PI МА — пульсационный индекс маточных артерий; AT1-R — рецептор ангиотензина II 1-го типа

Таблица 4. Эффективность различных профилактических стратегий в зависимости от патогенетического варианта преэклампсии в группе высокого риска (n=289)

Патогенетический вариант	Стандартное наблюдение (n=97), n (%)	АСК 150 мг/сут (n=96), n (%)	Персонализированная профилактика (n=96), n (%)	RR (95% ДИ) стандарт vs ACK	RR (95% ДИ) стандарт vs персонализированная	р-значение
Плацентарный (n=87)	32/29 (82,8)	21/28 (75,0)	10/30 (33,3)	0,73 (0,59–0,91)	0,40 (0,27-0,61)	<0,001
Эндотелиальный (n=68)	24/23 (82,6)	7/22 (31,8)	4/23 (17,4)	0,38 (0,21–0,72)	0,21 (0,09–0,51)	<0,001
Метаболический (n=54)	18/18 (100)	14/18 (77,8)	5/18 (27,8)	0,78 (0,61–0,99)	0,28 (0,13-0,58)	<0,001
Иммунологический (n=42)	12/13 (92,3)	10/14 (71,4)	4/15 (26,7)	0,77 (0,55–1,09)	0,29 (0,12-0,70)	<0,001
Смешанный (n=38)	11/14 (78,6)	9/14 (64,3)	3/10 (30,0)	0,82 (0,52–1,29)	0,38 (0,14–1,05)	0,041
Всего (n=289)	87/97 (89,7)	61/96 (63,5)	26/96 (27,1)	0,71 (0,60-0,84)	0,30 (0,21–0,43)	<0,001

АСК — ацетилсалициловая кислота; RR — относительный риск; ДИ — доверительный интервал

сии до 27,1 % (RR 0,30, 95 % ДИ 0,21–0,43), что соответствует редукции риска на 70 %.

Анализ материнских и перинатальных исходов (Таблица 5) продемонстрировал значимые преимущества персонализированного подхода к ведению преэклампсии. Частота тяжелых материнских осложнений была существенно ниже в группе персонализированного ведения (11,5 % против 41,4 %, р <0,001). Перинатальные исходы также демонстрировали более благоприятную картину в группе персонализированного ведения.

Заключение

Проведенное исследование продемонстрировало эффективность персонализированного подхода к прогнозированию, профилактике и лечению преэклампсии. Разработанная интегральная модель прогнозирования риска, включающая клинические, биохимические, уль-

тразвуковые и генетические маркеры, показала высокую прогностическую ценность с чувствительностью 87,4 % и специфичностью 92,1 %.

Выявленная гетерогенность патогенетических вариантов преэклампсии подтверждает необходимость дифференцированного подхода к профилактике и лечению. Плацентарный вариант преобладал среди случаев ранней преэклампсии (53,6 %) и ассоциировался с наиболее неблагоприятными исходами. Частота тяжелых материнских осложнений в группе персонализированного ведения составила 11,5 % против 41,4 % в группе стандартного подхода, что соответствует снижению риска на 82 %. Средняя длительность госпитализации сократилась с 12,7 до 8,5 дней. Перинатальные исходы также демонстрировали более благоприятную динамику со снижением частоты преждевременных родов до 34 недель с 33,3 % до 17,2 %, задержки внутриутробного развития с 31,0 % до 18,4 % и асфиксии при рождении с 26,4 %

Таблица 5. Материнские и перинатальные исходы в зависимости от стратегии ведения преэклампсии (n=174)

Исход	Стан- дартное ведение (n=87)	Персонали- зированное ведение (n=87)	OR (95% ДИ)	р-зна- чение		
	Матери	нские исходы				
Эклампсия, п (%)	7 (8,0)	2 (2,3)	0,27 (0,05–1,34)	0,087		
HELLP-синдром, n (%)	9 (10,3)	3 (3,4)	0,31 (0,08–1,19)	0,075		
Отслойка плаценты, n (%)	6 (6,9)	1 (1,1)	0,16 (0,02–1,35)	0,057		
Острое поврежде- ние почек, п (%)	12 (13,8)	3 (3,4)	0,22 (0,06–0,82)	0,016		
Отек легких, п (%)	5 (5,7)	1 (1,1)	0,19 (0,02–1,68)	0,097		
Инсульт, п (%)	2 (2,3)	0 (0)	-	0,156		
Потребность в ИВЛ, n (%)	4 (4,6)	0 (0)	-	0,043		
Материнская смерт- ность, n (%)	1 (1,1)	0 (0)	-	0,316		
Любое тяжелое осложнение, п (%)	36 (41,4)	10 (11,5)	0,18 (0,08–0,40)	<0,001		
Длительность госпитализации, дни (M±SD)	12,7±5,2	8,5±3,6	-	<0,001		
Перинатальные исходы						
Преждевременные роды <34 нед, n (%)	29 (33,3)	15 (17,2)	0,42 (0,21–0,85)	0,014		
Преждевременные роды <37 нед, n (%)	51 (58,6)	34 (39,1)	0,45 (0,25–0,84)	0,010		

Исход	Стан- дартное ведение (n=87)	Персонали- зированное ведение (n=87)	OR (95% ДИ)	р-зна- чение
ЗВУР плода, n (%)	27 (31,0)	16 (18,4)	0,50 (0,25–1,01)	0,050
Асфиксия при рождении, n (%)	23 (26,4)	12 (13,8)	0,44 (0,21–0,95)	0,034
Респираторный дистресс-синдром, n (%)	19 (21,8)	10 (11,5)	0,47 (0,20–1,07)	0,068
Неонатальный сепсис, n (%)	8 (9,2)	4 (4,6)	0,48 (0,14–1,64)	0,232
Внутрижелудочко- вое кровоизлияние, n (%)	6 (6,9)	2 (2,3)	0,32 (0,06–1,62)	0,146
Перинатальная смертность, n (%)	5 (5,7)	1 (1,1)	0,19 (0,02–1,68)	0,097
Оценка по Апгар на 5 мин <7, n (%)	18 (20,7)	7 (8,0)	0,34 (0,13–0,84)	0,017
Госпитализация в ОРИТН, n (%)	38 (43,7)	22 (25,3)	0,44 (0,23–0,83)	0,011
Длительность пре- бывания в ОРИТН, дни (M±SD)	8,2±6,3	5,4±4,1	-	<0,001

OR — отношение шансов; ДИ — доверительный интервал; ЗВУР — задержка внутриутробного развития плода; ОРИТН — отделение реанимации и интенсивной терапии новорожденных

до 13,8 %. Внедрение разработанного алгоритма в клиническую практику имеет потенциал для значимого снижения заболеваемости и смертности, связанной с преэклампсией, а также для оптимизации использования ресурсов здравоохранения.

ЛИТЕРАТУРА

- 1. Ananth C.V., Keyes K.M., Wapner R.J. Pre-eclampsia rates in the United States, 1980-2010: age-period-cohort analysis. BMJ. 2013;347. DOI: 10.1136/bmj. f6564
- 2. Bartsch E., Medcalf K.E., Park A.L., Ray J.G. Clinical risk factors for pre-eclampsia determined in early pregnancy: systematic review and meta-analysis of large cohort studies. BMJ. 2016;353. DOI: 10.1136/bmj. i1753
- 3. Phipps E.A., Thadhani R., Benzing T., Karumanchi S.A. Pre-eclampsia: pathogenesis, novel diagnostics, and therapies. Nat Rev Nephrol. 2019;15(5):275—289. DOI: 10.1038/s41581-019-0119-6
- 4. Brown M.A., Magee L.A., Kenny L.C., et al. Hypertensive Disorders of Pregnancy: ISSHP Classification, Diagnosis, and Management Recommendations for International Practice. Hypertension. 2018;72(1):24–43. DOI: 10.1161/HYPERTENSIONAHA.117.10803
- 5. Lisonkova S., Joseph K.S. Incidence of preeclampsia: risk factors and outcomes associated with early—versus late-onset disease. Am J. Obstet Gynecol. 2013;209(6): 544.e1–544.e12. DOI: 10.1016/j.ajog.2013.08.019
- 6. Zeisler H., Llurba E., Chantraine F., et al. Predictive Value of the sFlt-1

- 7. Ratio in Women with Suspected Preeclampsia. N Engl J. Med. 2016;374(1):13-22. DOI: 10.1056/NEJMoa1414838 Rolnik DL, Wright D, Poon L.C., et al. Aspirin versus Placebo in Pregnancies at High Risk for Preterm Preeclampsia. N Engl J Med. 2017;377(7):613–622. DOI: 10.1056/NEJMoa1704559
- 8. Chappell L.C., Cluver C.A., Kingdom J., Tong S. Pre-eclampsia. Lancet. 2021;398(10297):341–354. DOI: 10.1016/S0140-6736(20)32335-7
- 9. Bujold E., Roberge S., Lacasse Y., et al. Prevention of Preeclampsia and Intrauterine Growth Restriction with Aspirin Started in Early Pregnancy: A Meta-Analysis. Obstet Gynecol. 2010;116(2):402—414. DOI: 10.1097/AOG.0b013e3181e9322a
- 10. Sovio U., White I.R., Dacey A., Pasupathy D., Smith G.C.S. Screening for fetal growth restriction with universal third trimester ultrasonography in nulliparous women in the Pregnancy Outcome Prediction (POP) study: a prospective cohort study. Lancet. 2015;386(10008):2089–2097. DOI: 10.1016/S0140-6736(15)00131-2
- 11. Hoffman M.K., Goudar S.S., Kodkany B.S., et al. Low-dose aspirin for the prevention of preterm delivery in nulliparous women with a singleton pregnancy (ASPIRIN): a randomised, double-blind, placebo-controlled trial. Lancet. 2020;395(10220):285—293. DOI: 10.1016/S0140-6736(19)32973-3
- 12. Steegers E.A., von Dadelszen P., Duvekot J.J., Pijnenborg R. Pre-eclampsia. Lancet. 2010;376(9741):631-644. DOI: 10.1016/S0140-6736(10)60279-6
- 13. Akolekar R., Syngelaki A., Poon L., Wright D., Nicolaides K.H. Competing risks model in early screening for preeclampsia by biophysical and biochemical markers. Fetal Diagn Ther. 2013;33(1):8–15. DOI: 10.1159/000341264
- 14. Rana S., Lemoine E., Granger J.P., Karumanchi S.A. Preeclampsia: Pathophysiology, Challenges, and Perspectives. Circ Res. 2019;124(7):1094—1112. DOI: 10.1161/CIRCRESAHA.118.313276
- 15. Roberge S., Nicolaides K.H., Demers S., Villa P., Bujold E. Prevention of perinatal death and adverse perinatal outcome using low-dose aspirin: a meta-analysis. Ultrasound Obstet Gynecol. 2013;41(5):491–499. DOI: 10.1002/uoq.12421
- 16. Poon L.C., Shennan A., Hyett J.A., et al. The International Federation of Gynecology and Obstetrics (FIGO) initiative on pre-eclampsia: A pragmatic guide for first-trimester screening and prevention. Int J Gynaecol Obstet. 2019;145 Suppl 1:1—33. DOI: 10.1002/ijgo.12802
- 17. Abalos E., Cuesta C., Grosso A.L., Chou D., Say L. Global and regional estimates of preeclampsia and eclampsia: a systematic review. Eur J Obstet Gynecol Reprod Biol. 2013;170(1):1–7. DOI: 10.1016/j.ejogrb.2013.05.005.

© Классов Алибек Мурзабекович (Alibekklassov1989@gmail.com); Немцева Лада Андреевна (Soul339@mail.ru); Веснина Олеся Вячеславовна (Vesninaol64@mail.ru); Генина Вероника Александровна (v.genina@inbox.ru); Иващенко Виктория Владимировна (Ivashencko.viktoriya@yandex.ru); Попова Екатерина Алексеевна (katerina_popova2702@mail.ru)

Журнал «Современная наука: актуальные проблемы теории и практики»